
SOFRITAS: Serializable Ordering-Free Regions for

Increasing Thread Atomicity Scalably

Christian DeLozier
delozier@cis.upenn.edu

University of Pennsylvania

Ariel Eizenberg
arieleiz@cis.upenn.edu

University of Pennsylvania

Brandon Lucia
blucia@andrew.cmu.edu

Carnegie Mellon University

Joseph Devietti
devietti@cis.upenn.edu

University of Pennsylvania

Abstract

Correctly synchronizing multithreaded programs is challeng-
ing and errors can lead to program failures such as atomic-
ity violations. Existing strong memory consistency models
rule out some possible failures, but are limited by depend-
ing on programmer-defined locking code. We present the
new Ordering-Free Region (OFR) serializability consistency
model that ensures atomicity for OFRs, which are spans of dy-
namic instructions between consecutive ordering constructs
(e.g., barriers), without breaking atomicity at lock operations.
Our platform, Serializable Ordering-Free Regions for Increas-
ing Thread Atomicity Scalably (SOFRITAS), ensures a C/C++
program’s execution is equivalent to a serialization of OFRs
by default. We build two systems that realize the SOFRI-
TAS idea: a concurrency bug finding tool for testing called
SofriTest, and a production runtime system called SoPro.

SofriTest uses OFRs to find concurrency bugs, including
a multi-critical-section atomicity violation in memcached
that weaker consistency models will miss. If OFRs are too
coarse-grained, SofriTest suggests refinement annotations
automatically. Our software-only SoPro implementation
has high performance, scales well with increased parallelism,
and prevents failures despite bugs in locking code. SoPro
has an average overhead of just 1.59x on a single-threaded
execution and 1.51x on sixteen threads, despite pthreads’
much weaker memory model.

CCS Concepts • Computer systems organization →
Multicore architectures; • Software and its engineer-

ing→ Runtime environments;

Keywords atomicity, region serializability, data races, C,
C++

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4911-6/18/03.
https://doi.org/10.1145/3173162.3173192

ACM Reference Format:

Christian DeLozier, Ariel Eizenberg, Brandon Lucia, and Joseph
Devietti. 2018. SOFRITAS: Serializable Ordering-Free Regions for
Increasing Thread Atomicity Scalably. In ASPLOS ’18: 2018 Archi-

tectural Support for Programming Languages and Operating Systems,

March 24–28, 2018, Williamsburg, VA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3173162.3173192

1 Introduction

Following a decades-long trend toward pervasive parallelism,
shared-memory multi-threaded programs, written in wide-
spread languages like C, C++, and Java, are the applications in
the cloud, mobile devices, and even embedded systems [20].
Nearly every programmer today must write parallel pro-
grams and there is an urgent need to make it simple to write
efficient parallel code.
A system’s memory consistency model crucially affects

a system’s performance and programmability. The mem-
ory models for Java [36], C++ [7], and various hardware
architectures [35, 44, 46] permit aggressive optimization, but
are complex and inaccessible to most programmers. Sys-
tems with a Sequentially Consistent (SC) model [6, 11, 37,
53] give sequential interleaving semantics to parallel execu-
tions, with interleaving at instruction granularity. Recent re-
search in “strong consistencymodels” has followed a trend to-
ward offering atomicity with ever-coarser region definitions,
such as multi-instruction regions [37], loop-free regions [45],
synchronization-free regions (SFRs) [33], or release-free re-
gions (RFRs) [5, 58]. In general, offering atomicity at coarser
granularity limits the possible thread interleavings of a pro-
gram and thereby simplifies the task of writing correct code.
These existing systems guarantee that all executions ex-

hibit region serializability, and throw an exception otherwise.
This guarantee simplifies language semantics, but does not
go much further because serializability is provided only for
programmer-demarcated regions, which may be insufficient
for correctness. If the programmer gets the region boundaries
wrong, these prior systems cannot help.

https://doi.org/10.1145/3173162.3173192
https://doi.org/10.1145/3173162.3173192

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA C. DeLozier et al.

In this work, we develop SOFRITAS, a new, software-only
region-based memory consistency model. One of SOFRI-
TAS’s key contributions is to provide atomicity at a granular-
ity much coarser than existing proposals: extending beyond
SFRs and RFRs to ordering-free regions (OFRs) of code that
are punctuated only by ordering constructs. We define or-
dering constructs as barrier wait, condition variable wait,
and thread fork and join. Note that condition variable notify
is not a synchronization operation in the C/C++ standard
because of the possibility of spurious wakeups. Accordingly,
SOFRITAS does not break atomicity on notify operations.
With SOFRITAS, a program’s behavior is equivalent to a se-
rialization of atomically-executed OFRs (otherwise a precise
exception is raised). We demonstrate two systems that uti-
lize OFR atomicity: a testing tool SofriTest that finds new
concurrency bugs that other strong memory consistency
models cannot, and an always-on pure-software runtime for
production SoPro that uses OFR atomicity to automatically
prevent concurrency bugs from manifesting as errors.

SofriTest assumes that ordering constructs are correctly
placed by the programmer, and that every OFR should exe-
cute atomically. Since SofriTest’s region atomicity is coarser
than the critical sections defined by lock acquires and re-
leases, the presence of locking operations in source code
is no longer needed for atomicity. Eliminating any depen-
dence on the correctness of locking code provides a signifi-
cant benefit: code can run correctly despite missing or

incorrectly-placed locks. This allows SofriTest to find
high-level atomicity violation bugs (such as the one illus-
trated in Figure 1) that prior strong memory consistency
models cannot.
Assuming that OFRs should execute atomically appears

to be an empirical upper bound on the atomicity that real
programs require – a dynamic analysis run on all inputs to
all PARSEC benchmarks, and multiple runs of Apache, mem-
cached and pbzip2 found no examples of code that required
atomicity coarser than an OFR. However, OFR atomicity can
sometimes be too coarse and programs may require RFR-,
SFR- or even instruction-level atomicity to make progress. If
necessary, a programmer using SofriTest can refine atomic-
ity using annotations to harmonize with the program’s atom-
icity requirements. There is of course a risk that refinement
requires extensive programmer effort. Perhaps surprisingly,
we find that this is not the case, for two reasons. First, when
OFRs are unserializable, SofriTest raises a precise excep-
tion that exactly identifies the code and data involved. A
user study (Section 6.2.1) shows that these exceptions are
more useful for writing correct code than the reports from a
data race detector. Second, SofriTest provides automatic

refinement suggestions to programmers instructing them
precisely how to annotate their code. These suggestions are
highly accurate: SofriTest suggested the right refinement
annotation at the right code location 97% of the time in our
evaluation (Section 6.2.3). Ultimately, we find that starting

release&L;

operation
acquire&L;
load&str;
release&L;

load&len;
acquire&L;

SC,
SFRs,
RFRs

SOFRITASrequired
atomicity

Figure 1. An atomicity violation bug drawn from Firefox [32],
where a string’s contents and length are read in two separate critical
sections, allowing inconsistency to arise. The bug is exposed under
the SC, SFR and RFR consistency models. SOFRITAS offers stronger
atomicity that automatically prevents the bug from manifesting.

from a safe, overly-atomic foundation and refining to regain
progress is an easier path towards correct parallel software
than today’s approach of building up atomicity from scratch.

The second system we describe and evaluate is SoPro, the
first pure-software, strong memory consistency enforcement
mechanism for C and C++ programs. OFR atomicity allows
SoPro to automatically prevent real concurrency bugs from
causing a failure, where weaker models permit the failure
(Section 6.2.2).

SoPro uses a fine-grained memory ownership mechanism
that ensures a thread has permission to read or write a loca-
tion before each access (i.e., per-location reader/writer locks).
SoPro monotonically acquires a region’s reader/writer locks
and releases them only when a region completes (imple-
menting strong, strict 2-phase locking [3]). Lock ownership
checks in the common case comprise just seven x86 CPU in-
structions that make cache-friendly accesses to thread-local
data. Threads only access their own thread-local data to
check ownership, and other threads will only perform reads
on that data in the case of a contended lock. Ownership
checks are designed such that sequential accesses to data
will access sequential lock metadata in memory, providing
spatial locality in the cache. SoPro also leverages existing
virtual memory support to quickly release locks in bulk at
region boundaries. Coupled with a novel high-locality mem-
ory layout for locks, SoPro provides the benefits of OFR
serializability with scalability and performance: SoPro’s av-
erage slowdown of 1.59x compares favorably with the 1.99x
slowdown of the state-of-the-art Java-based Valor system [5],
though of course the implementations and benchmarks differ
significantly. Moreover, Valor benefits from a lazy conflict
detection optimization that is permissible because deleteri-
ous side-effects from racy code are sandboxed by the JVM.
In addition to delaying exception delivery, which can frus-
trate debugging, lazy conflict detection in our C/C++ context
would require additional runtime instrumentation to provide
sandboxing [14], mitigating the benefits. Ultimately, SoPro
provides coarser atomicity (OFRs), more precise exception
delivery, and better performance than Valor.

SOFRITAS ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

SoPro is useful on its own for programs that run well
with OFR atomicity, and it can transparently hide the failures
due to some concurrency bugs, even high-level atomicity
violations. SofriTest and SoPro are also useful together
where suggestions from SofriTest help general programs
to run exception-free under SoPro.
This paper makes the following contributions:

• Wedescribe the SOFRITASmemory consistencymodel,
which provides ordering-free region (OFR) serializabil-
ity guarantees that are stronger than previous models
• We show that SofriTest detects real bugs, including
a multi-critical-section atomicity violation in mem-
cached, and that its annotation suggestions are useful
for adapting programs to run with OFR atomicity
• We demonstrate that a pure-software implementa-
tion of SoPro automatically prevents 5 of the 7 con-
currency bug failures we find with SofriTest, while
achieving acceptable (1.59x) performance overhead.
• To the best of our knowledge, SoPro is the first pure-
software strong memory consistency model for un-
managed C/C++ code.

This paper is organized as follows. Section 2 provides back-
ground on strong memory consistency models. Section 3 ex-
plains the SOFRITAS algorithm and API. Section 4 describes
SOFRITAS’s guarantees formally. Section 5 describes the
software implementation and optimizations shared by both
SofriTest and SoPro. Section 6 presents an evaluation of
SofriTest’s usability and bug detection capabilities, and of
SoPro’s performance. Finally, we discuss related work in
Section 7.

2 Background: Strong Consistency Models

There have been several proposals of strong memory con-
sistency models that help catch bugs, simplify reasoning for
programmers, and simplify language specifications. These
proposals can be characterized along two dimensions: the
granularity of the code regions for which serializability is
guaranteed, and the precision with which serializability vio-
lations are detected. SOFRITAS improves upon prior work
along both dimensions. We address these dimensions in turn,
and then discuss empirical measurements of atomicity with
our model and those of previous work.

2.1 Why is OFR atomicity needed?

Figure 1 shows a distilled version of an atomicity violation
bug from Firefox [32]. Two separate critical regions read the
string str and length len, potentially observing them while
they are inconsistent (i.e., during an update). The required
atomicity for this code is indicated by the green marker on
the left, but the provided locking is insufficient to enforce
this atomicity.

The blue markers in the middle indicate the span of atomic
regions under three consistency models: sequential consis-
tency (SC) [28, 37, 45], synchronization-free regions (SFRs)
[33, 40] and release-free regions (RFRs) [5], which all have
the same region boundaries for this program. With SC, each
individual instruction is atomic. SFRs break atomicity at lock
acquires and releases, and at ordering constructs. RFRs break
atomicity at lock releases and release ordering constructs
(barrier waits, condition notifies and fork). None of these
models, however, enforce atomicity for long enough regions
to prevent reading inconsistent data in Figure 1’s example.
SOFRITAS, which breaks atomicity only at ordering con-

structs, provides atomicity across the critical sections that
access the string’s fields because there is no ordering con-
struct between them. SOFRITAS’s coarse-grained OFR atom-
icity, as shown by the red marker on the right, prevents the
bug from manifesting by ensuring that str and len are read
atomically. In Section 6.2.2, we examine a real concurrency
bug in memcached [49] which is detected and prevented by
OFR atomicity but not by weaker atomicity models.

2.1.1 Quantifying Atomicity

(a) ferret (b) fluidanimate

Figure 2. CDFs showing the percentage of memory locations (x-
axis) that are atomic over a percentage of regions (y-axis). In flu-
idanimate, most SFRs and RFRs protect <1% of memory locations,
whereas OFRs protect roughly 20% of memory locations.

While OFRs have intuitive benefits over finer-grained
atomic regions, it is not obvious that these advantages pro-
vide any benefit given the structure of real code. With fre-
quent ordering synchronization, OFRs, SFRs and RFRs may
be similarly-sized in practice.We analyzed howmuch atomic-
ity various consistency models provide in real code. For each
region r , we record r ’s width – how many distinct memory
locations were accessed within r . At the end of the execu-
tion, we compute how many regions have a width ofw as a
fraction of all regions, and plot this as a cumulative distri-
bution function. Our width metric captures the ability of a
consistency model to enforce atomicity across memory loca-
tions, reducing the probability of multi-variable atomicity
violations like the bug in Figure 1.

Figure 2 shows atomicity measurements for some repre-
sentative programs. In these CDFs, a program with a curve

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA C. DeLozier et al.

Fail-on-Conflict

conflictload%x;
store%x;
raise%exn;

Conflict Serializability

load%x; store%x;

store%x;

wait

depend.

T0 T1 T0 T1

Figure 3. A simple program that raises an exception with the
“fail-on-conflict” approach, but is exception-free under conflict seri-
alizability.

that rises more gently has more atomicity because it has a
large proportion of wide regions and a small proportion of
low-width (narrow) regions. Curves that rise steeply indicate
that most regions are narrow. Figure 2a shows results for
ferret, where shared queues lead to periodic ordering syn-
chronization that punctuates atomic regions under all mod-
els. SFRs and RFRs are always narrow, while OFRs are much
wider in general and the widest OFRs are much wider than
the widest SFRs/RFRs. Figure 2b shows results for fluidani-
mate, which has complex fine-grained locking that makes
regions narrow for SFRs and RFRs, while OFRs are consid-
erably wider. Overall, we find that the theoretical benefits
of OFRs manifest more clearly in programs with more com-
plicated parallel structure, which are arguably the programs
likeliest to suffer from concurrency bugs. We also find no
significant difference in atomicity between SFRs and RFRs,
suggesting that the benefits of moving from SFRs to RFRs
are limited.

2.2 Conflict Serializability

Work on strong memory consistency models, like SOFRITAS,
provides a guarantee that completed executions are equiva-
lent to ones in which all regions execute serializably. When
an execution is not serializable, an exception is thrown. Some
previous work [5, 33, 45] has used a highly conservative “fail-
on-conflict” policy to detect unserializable executions. These
systems raise an exception whenever a memory conflict oc-
curs between concurrently-executing regions, where a con-
flict is defined as a pair of memory operations to the same
location, from different threads, with at least one operation
being a write.

The “fail-on-conflict” strategy offers an asymmetric guar-
antee: an exception-free execution is serializable at region
granularity, while any exception raised is due to a data race.
However, some executions with exceptions are also serial-
izable. To reduce the number of exceptions, the FastRCD-A
system [58] adopts the more precise notion of conflict serial-
izability, which SOFRITAS also implements via strong, strict
two-phase locking [3].
Figure 3 illustrates the distinction between the “fail-on-

conflict” approach and conflict serializability via a simple
program. Conflict serializability waits when it encounters a
conflict, which allows it to execute this program serializably

current program point

dependences

T0 T1
load	x;

store	y;

store	x;

load	x;

store	y;

Figure 4. A program that can throw an exception with reader-
writer locking but not with mutex locking. Arrows indicate depen-
dencies between threads; the dashed arrow can arise only with
reader-writer locking.

every time. [58] demonstrates that conflict serializability
reduces region conflicts for some programs by orders of
magnitude compared to the “fail-on-conflict” approach. Con-
flict serializability is thus especially necessary in conjunction
with OFRs, as large regions increase the probability of region
conflicts.

3 OFR Atomicity with SOFRITAS

In this section we describe SOFRITAS’s algorithm for en-
forcing OFR conflict serializability, how SOFRITAS provides
precise exceptions, and how exceptions can be resolved via
user annotations. These elements are used by both Sofri-
Test and SoPro.

3.1 Core Algorithm

Each memory location x is associated with a reader-writer
lock lx . Before each memory access to x by a thread t , t
acquires lx if t does not already hold lx . t acquires lx in read-
mode for a read and in write-mode for a write. At the end of
a region, when t encounters an ordering construct – a fork,
join, condition signal, condition wait, or barrier – t releases
all the locks it holds. If t is ever unable to acquire a lock
lx , then some other thread u must have accessed x in u’s
current OFR and at least one of t ’s or u’s accesses is a write
(i.e., t ’s and u’s accesses conflict). t ’s inability to acquire lx
indicates a memory conflict between t and u. Some existing
consistency models raise an exception on t ’s access to x
due to the memory conflict, but SOFRITAS instead tracks a
dependence from t tou and waits untilu releases lx , avoiding
unnecessary exceptions on conflicts that do not compromise
serializability.
SOFRITAS’s use of reader-writer locks (instead of mutex

locks) increases parallelism by allowing read-sharing of data,
which is crucial for good performance and scalability. How-
ever, neither reader-writer locking nor mutex locking result
in strictly fewer exceptions on all programs. Reader-writer
locks introduce a notion of a lock upgrade, where a thread
t holds a lock lx in read-mode and then tries to write to x ,
requiring that lx be upgraded to write-mode. This upgrade
requires waiting for all existing readers of x to release their
locks. Figure 4 shows a sample program that can raise an
exception under reader-writer locking, but not with mutex
locking. Thread t0 is blocked due to a lock upgrade (dashed

SOFRITAS ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

arrow), while thread t1 waits on t0 for its write toy. With mu-
tex locks, t0’s lock upgrade cannot arise. Instead, the threads
get serialized at their initial reads of x , and once they acquire
lx they can run to completion.

3.2 SOFRITAS API

SOFRITAS has a small API consisting of four annotations that
allow programmers to refine a program’s region specification
and optimize performance. These annotations are used for
both SofriTest and SoPro.

A SofritasRelease() annotation refines a program’s region
specification, sub-dividing a region into smaller regions, e.g.,
to eliminate an exception. The basic SofritasRelease() anno-
tation explicitly releases a specified location’s lock and we
include “syntactic sugar” API calls that batch release locks
on objects and arrays.
A SofritasRequireMutex() annotation associates a mutex

lock with amemory location, rather than a reader-writer lock
to avoid upgrade cycles (Figure 4). The SOFRITAS compiler
automatically places SofritasRequireMutex() annotations in
most cases (Section 5.2) and the runtime system automat-
ically suggests the placement of a mutex annotation if an
upgrade cycle occurs.

A SofritasEndOFR() annotation ends a region before exe-
cution reaches an ordering operation. SofritasEndOFR() is
useful when only short regions of code need to be atomic,
but ordering operations only rarely end regions. For exam-
ple, SofritasEndOFR() is helpful in a pipeline parallel ap-
plication that requires atomicity of pairs of dequeue and
enqueue operations only, but rarely executes ordering oper-
ations, enforcing much coarser atomicity. Note that a single
SofritasEndOFR() annotation may eliminate the need for
several SofritasRelease() annotations.

A SofritasContinueOFR() annotation specifies that its con-
taining region should not end at the next ordering operation
executed. SofritasContinueOFR() would be useful when a
program requires atomicity coarser than an OFR (although
we never encountered such a situation). SofritasContinue-
OFR() can also be useful to improve performance by avoiding
frequent lock releases at region boundaries. For example, in
canneal, we find that not releasing locks at a barrier does
not affect correctness because SofritasRelease() annotations
release all locks that cause OFRExceptions.

3.3 Precise OFR Exceptions

SOFRITAS associates a lock with each memory location. The
mapping from memory locations to locks is determined by
the granularity at which an application accesses memory.
For many applications, SOFRITAS can associate one lock
with each 4-byte word of memory. However, in some cases,
applications share data at byte granularity. In those cases,
SOFRITAS must associate a lock with each byte of mem-
ory in order to avoid false positives. SOFRITAS’s locking
granularity is configurable by the programmer but remains

fixed for an execution. To reduce the costs of lock overhead,
SOFRITAS assumes that programs always access a given
memory location with loads/stores of a consistent width, i.e.,
a 4-byte integer is never accessed with single-byte loads and
stores. This permits locking only the first byte in a multi-byte
access. A future version of SOFRITAS could be extended to
lock every byte within each access, using modern processors’
128-bit CAS instructions, or hardware transactional memory
support like Intel’s TSX instructions, to reduce the overheads
of these additional lock acquires.

To reduce the space costs of byte-granularity locking, SO-
FRITAS adopts a cache-friendly lock representation to max-
imize locality within each thread (Section 5). SOFRITAS’s
fine-grained locking allows it to detect precisely when a
thread’s next operation threatens conflict serializability, be-
fore the violation has occurred. When an access to memory
location x by thread t0 conflicts with an earlier access to x by
another thread t1, t0 enters a waiting state until t1 releases
its lock on x . If the threads execute multiple conflicting ac-
cesses that forces them to wait for one another, SOFRITAS
raises an exception. Through the exception, the programmer
can examine an uncorrupted view of t0’s memory in which
OFR atomicity has not been violated, and can see the specific
operations in t0 involved in the conflict cycle.
The SOFRITAS runtime uses a distributed deadlock de-

tection algorithm [9] to detect conflict cycles. Only waiting
threads run cycle detection, putting the work of deadlock
detection off of the execution’s critical path.

3.4 Resolving Exceptions with Annotations

SOFRITAS triggers an OFRException when executing OFRs
have at least two conflicts and the conflicts form a cycle in
the conflict graph [3]. An OFRException indicates that the
program permitted an unserializable execution of its regions
and shows where and how the program must be modified
to avoid this exception in the future. Returning to the code
from Figure 4, SOFRITAS will suggest to either 1) release
the lock on y in t0 with a SofritasRelease() annotation, 2)
release the lock on x in t1, 3) release both locks, or 4) ensure
that x and y are updated together by changing x to use
mutex locking or altering the order of stores in t0. By default,
SOFRITAS suggests option 3) on an exception. While SO-
FRITAS trusts the programmer to choose correctly based on
application semantics, SOFRITAS automatically suggests the
right annotation 97% of the time (Section 6.2.3).

3.5 Working with Library Code

Using a library with an application running on SOFRITAS in-
volves a few extra steps for the library writer. Library writers
should identify library objects, so that SOFRITAS can asso-
ciate a reader-writer lock with each one. Library API calls
should be annotated as logical reads or writes of a library
object, e.g., inserting into a set counts as a write, while check-
ing for a given set element is a read. This allows read-only

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA C. DeLozier et al.

operations to run in parallel. We have found that this ap-
proach to library integration allows legacy code to be reused
safely with minimal effort. As a proof of concept, we have
created the necessary annotations for C++ STL containers
as many of our benchmarks use these. Crucially, SOFRITAS
still provides coarse-grained atomicity for accesses to library
objects: the SOFRITAS lock on a set will be held until the end
of the OFR. This provides natural atomicity across library
API calls, making it straightforward to, e.g., atomically insert
multiple elements into a set via individual insert calls.

Internally, a library can use arbitrary synchronization id-
ioms for correctness, including locks, atomic operations, etc.
This internal synchronization lives outside SOFRITAS. In fu-
ture work, we plan to extend SOFRITAS’s library support to
provide synchronization at finer granularity than entire ob-
jects, and to explore how a library’s internal synchronization
can be simplified in the presence of SOFRITAS.

4 Proof of Correctness

This section shows formally that SOFRITAS enforces conflict
serializability. We use the following numbered properties of
SOFRITAS to support our argument.

1. SOFRITAS associates a single reader-writer lock with
each program location.

2. No access to a location by a thread proceeds without
first holding the location’s lock in the correct mode
for the access (i.e., read vs. write mode).

3. No lock is ever released by a thread until all of the
thread’s region’s accesses complete.

4. Conflicting lock acquires (i.e., at least one acquire is a
write-mode acquire) are globally ordered.

5. SOFRITAS performs precise cyclic lock waiting (i.e.,
deadlock) detection.

Theorem 1 (Exception-free serializability). If a SOFRITAS
execution of OFRs is free of OFRExceptions, then the execution

is conflict serializable.

Proof. We prove this claim by assuming that an OFRExcep-
tion-free execution was not conflict serializable and showing
that this assumption leads to a contradiction. For simplicity
we prove the two-OFR case, but our argument generalizes
to arbitrary-length conflict cycles.
If an execution is not conflict serializable, then the def-

inition of conflict serializability implies that there is a set
of conflicts between OFRs that form a cycle in the conflict
graph. Consider oi and oj , two OFRs from different threads
that both access a location x leading to a conflict. By (1)
and (2), SOFRITAS ensures oi and oj acquire the lock for x
in the correct mode before the access. By the definition of
a conflict, one (or both) of oi or oj is writing x and by (2)
the writer(s) must hold the lock in write mode before the
write. By (4), the regions’ lock acquires are ordered because
the corresponding accesses conflict on x . By (3), whichever
region successfully acquired x ’s lock continues executing,

holding the lock until its region ends. The region that did
not acquire x ’s lock waits until the lock is released.

By our assumption that the execution is not conflict serial-
izable, there is another conflict between oi and oj on another
arbitrary location y. As with x , one region acquires y’s lock
and one waits. If the same region acquires y’s lock as ac-
quired x ’s lock, then that region completes and releases both
locks; in the absence of other conflicts, the regions serialize
violating our assumption that the execution is not conflict seri-

alizable. If, instead, the region that acquires y’s lock was not
the one that acquired x ’s lock, the regions deadlock, each
waiting for the other to release its lock. By (5), SOFRITAS
precisely detects this deadlock and reports an exception vio-

lating our assumption that the execution was exception-free.
Thus, our assumption leads to a contradiction, proving that
an exception-free execution is conflict serializable. □

Theorem 2 (Unserializability of OFRException). If a SOFRI-

TAS execution triggers an OFRException, then the execution is

not conflict serializable.

Proof. As above, we prove the two-OFR case, but our argu-
ment generalizes to arbitrary conflicts.We assume SOFRITAS
has generated an OFRException and show that it implies a
violation of conflict serializability. By (5), an OFRException
corresponds to SOFRITAS detecting that two regions are
mutually waiting for one another to release locks: region oi
waits for oj to release a lock on location x and oj waits for
oi to release a lock on location y. By (2), if a region proceeds
it will next immediately access the location protected by the
lock it waits for. At least one region’s imminent access to
each variable is a write, because pairs of reads would be al-
lowed to execute concurrently, by (1) and (4). Consequently,
the regions’ impending accesses form two conflicts, one on
x and one on y. Furthermore, by (1) and (5), because the
regions cyclically wait to acquire locks, the corresponding
access conflicts are also cyclic.

For brevity, we omit our case-based analysis of all the pos-
sible combinations of cyclically conflicting regions. Instead,
we claim that all OFRException-triggering combinations of
oi and oj that have such a cyclic conflict form a cycle in the
conflict graph. By the definition of conflict serializability [3],
a cycle in the conflict graph indicates a violation of conflict
serializability. □

Discussion.We note that SOFRITAS’s correctness proof is
bijective – an execution free of exceptions is conflict serial-
izable and an exception indicates that an execution is not
conflict serializable. By contrast, prior work [5, 33, 45] pro-
vided a weaker correctness argument of asymmetric form –
an exception-free execution is serializable, but an exception
corresponds only to a conflict, indicating a data-race, but not
necessarily a violation of conflict serializability.

SOFRITAS ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

Lock
Metadata

write?

Thread 1

read?

⋮

12 bits1 bit1 bit1 bit 1 bit

1 bit 1 bit

tid

tid

Writer?

Writer?

Mutex?

Mutex?

Held?

Held?location 1

location 2

write? read?

⋮

write?

Thread 2

read?

1 bit 1 bit

write? read?

⋮

⋮

Per-Thread Local
Permissionslocation 1

location 2

Updating

Updating

Figure 5. SOFRITAS locks consist of global metadata and per-
thread local permissions. Global and per-thread metadata are stored
in separate places in memory. Only per-thread metadata is accessed
on lock ownership checks, which are frequent compared to lock
acquires.

5 Implementing OFR Atomicity

SOFRITAS requires efficient support for checking and ac-
quiring locks before each load and store instruction, which
we implemented in a compiler and a runtime library. The
following sections motivate and describe SOFRITAS’s lock
implementation, which is shared by both SofriTest and
SoPro.

5.1 Lock Implementation

SOFRITAS’s locks are designed to support efficient lock own-
ership checks, as these checks vastly outnumber lock ac-
quires on most programs (see Column 2 of Table 1). Figure 5
shows the structure of the locks used by SOFRITAS to en-
force OFR atomicity. Each lock is split into disjoint structures:
16 bits of global metadata and 2 bits (per-thread) of thread-
local permissions. Local permissions are only ever updated
by their corresponding thread, though they may be read by
remote threads. A thread t ’s lock ownership checks need
consult only t ’s local permissions. The locks for adjacent
memory locations map to adjacent global metadata, and to
adjacent local permissions for a given thread, ensuring that
spatial locality among a thread’s data accesses translates to
good locality for its lock accesses as well.
The mutex bit is set by SofritasRequireMutex() and en-

sures that a lock is always acquired with write permissions.
The updating bit acts as an internal lock over the lock’s state,
and is held while updating any lock state, including thread-
local permissions. The updating bit avoids writer starvation
as once a writer is able to set the updating bit, no new readers
can arrive.

To motivate the rest of the SOFRITAS lock design, we first
discuss how to enable efficient lock releases. Resetting global
metadata on each lock release would require maintaining a
prohibitively expensive list of every lock acquired during an
OFR. Instead, only local permissions are updated on a release.

Unheld
held = False
writer = False

tid = 0

Read Exclusive
held = True

writer = False
tid = Tx

Local Perms = R

read acquire

Read Shared
held = True

writer = False
tid = 0

Local Perms = R

read acquire

Write Exclusive
held = True
writer = True

tid = Tx
Local Perms = RW

write acquire

read
acquire

write acquire

write acquire

read acquire

write
acquire

Figure 6. SOFRITAS lock state transition diagram. Transitions
shown assume that no other thread currently has permissions that
prevent the acquire.

This admits an efficient implementation of bulk releases via
the madvise system call, using the MADV_DONTNEED flag
to zero a thread’s entire local permissions space via page
remapping. We found that madvise is noticeably faster than
using memset/bzero to zero memory directly, as it avoids
repeatedly zeroing memory on pages that are never used by
a thread.
Since only local permissions are updated on a release,

global metadata can become stale in that it may reflect state
before or after the most recent release operation. The de-
finitive state of a lock is recorded in local permissions, and
global metadata serves as a conservative summary of local
permissions. The held bit is set when a thread acquires the
lock and remains set thereafter, allowing first-acquires to
avoid checking any local permissions. The writer bit indi-
cates that a lock is held with write permissions (otherwise
it is in a read state), and the tid field identifies the exclu-
sive writer, or reader, or identifies the lock as read-shared.
Together, the writer and tid fields identify when a lock is
(or was just) in an exclusive state, so an acquiring thread
examines just one thread’s local permissions during a state
transition. Upon examining local permissions, an acquiring
thread t can determine whether global metadata is stale, i.e.,
whether the lock is actually still held by its supposed owner.
The only case where all thread-local permissions must be
consulted is for a read-shared to write-exclusive transition
(heavy arrow in Figure 6), where the writer waits for all
readers to release their locks.

SOFRITAS uses a modified version of the tcmalloc alloca-
tor. Calls to sbrk and mmap for large memory allocations
are redirected to the SOFRITAS runtime so that the global
metadata and thread-local shadow spaces are placed directly
after the heap. Lock lookups are thus a simple offset from a
given heap address.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA C. DeLozier et al.

1 2 3 4 5 6 7 8 9 10 11
Batch pthreads SofriTest

App Checks Acquires (Read, Write) Releases Releases Ord Atom Mutex Release OFR Easy Hard
blackscholes 7.13 B 2.8% (65.0%, 35.0%) - 16 2 - - - - - -
bodytrack 95.67 B 3.4% (38.9%, 61.1%) 370 M 180 K 17 34 3 20 - 20 -
canneal 21.61 B 23.5% (58.3%, 41.7%) 2.1 B 48 K 3 13 1 7 1 7 -
dedup 3.11 B 28.8% (98.8%, 1.21%) 7.8 M 91 K 9 13 5 18 1 18 -
ferret 187.90 B 5.9% (88.1%, 11.9%) 70 K 33 K 8 7 2 7 1 4 3
fluidanimate 228.67 B 20.2% (8.6%, 91.4%) 228 B 40 K 16 10 5 20 - 20 -
streamcluster 428.34 B 51.5% (99.2%, 0.8%) 4.4 B 638 K 30 6 - 11 - 11 -
swaptions 196.01 B 0.1% (2.8%, 97.2%) - 16 2 - - - - - -
gups 500.03 M 80.0% (50.0%, 50.0%) 100 M 16 2 2 - 1 - 1 -
pagerank 1.23 B 25.3% (79.4%, 20.6%) 247 M 17 2 10 - 7 - 7 -
histogram 3.75 B 0.1% (54.7%, 45.3%) - 16 2 - - - - - -
kmeans 14.78 B 1.1% (99.6%, 0.4%) - 3 K 2 - - - - - -
linear_regression 4.87 K 50.0% (53.3%, 46.7%) - 16 2 - - - - - -
matrix_multiply 2.01 B 0.1% (0.1%, 99.9%) - 16 2 - - - - - -
pca 16.10 B 0.4% (52.9%, 47.1%) 8 M 32 2 4 - 3 - 3 -
reverse_index 2.14 B 49.3% (99.5%, 0.5%) 157 K 30 2 4 1 2 - 2 -
string_match 1.42 B 0.1% (5.3%, 94.7%) - 16 2 - - - - - -
word_count 740.51 M 0.5% (66.8%, 33.2%) - 156 2 - - - - - -
pbzip2 121.9 K 69.2% (40.1%, 59.9%) 60.2 K 245 34 103 7 10 - 10 -

Table 1. Frequency of SofriTest operations and annotations. Acquires (Column 2) are listed as a percentage of checks (Column 1), and
subdivided into the fraction of read, and write, acquires as a percentage of all acquires.

5.2 Compiler Support

Immediately before each load or store instruction, the SOFRI-
TAS compiler inserts calls to perform a read or write acquire,
respectively. The performance critical lock ownership check
is inserted as inlined assembly because ownership checks
outnumber acquires for most programs. For non-aligned
locations, checking lock ownership requires 9 assembly in-
structions; 4-byte aligned locations can be checked in 7 in-
structions because the needed thread-local permissions are
always the low-order 2 bits and so masking is simple. The
SOFRITAS compiler inserts a simple function call that is
marked as always_inline to ensure that subsequent passes
inline the function. The inserted function contains inline
assembly for the lock ownership check and a non-inlined
function call to the acquire function.
The SOFRITAS compiler elides instrumentation for loca-

tions that do not escape the stack. The escape analysis is
borrowed from the Section Based Program Analysis [15].
If a load or store has already been instrumented within a
function, the compiler attempts to remove instrumentation
on subsequent accesses to the same location [2]. This opti-
mization is conservative in a few ways. Alias analysis must
determine that the two locations must alias. Further, subse-
quent accesses must be instrumented if the associated lock
may be released between the two accesses (e.g., by a call to
pthread_condition_wait).
Many of the programs that we studied required atomic

updates on counters. A counter update is most straightfor-
wardly instrumented as both a load and a store. This naive

instrumentation is likely to lead to an upgrade dependency
cycle between multiple threads that successfully acquire a
read lock on the counter load and then attempt to acquire a
write lock for the store. To prevent this common scenario,
any load that is post-dominated by a store is instrumented
as a store instead. This optimization often reduces the need
for SofritasRequireMutex() annotations.

The SOFRITAS compiler also inserts hooks to handle pro-
gram events including program start, thread create, thread
join, barrier waits, and condition variable operations.

6 Evaluation

6.1 Experimental Setup

We evaluated SofriTest and SoPro by running and anno-
tating selected benchmarks from PARSEC [4], Phoenix [43],
approximate computing benchmarks [1], and the real-world
pbzip2 v1.1.13. We use the native inputs for all PARSEC
benchmarks and the largest available input for Phoenix. We
extend the execution of linear_regression by 100 times to
yield a reasonable baseline runtime of more than a second
with 16 threads. We use custom inputs for the approximate
computing benchmarks that yield a baseline runtime of a
few seconds and scale with additional threads. For pbzip2
we compress a 200MB .iso file. Our experiments ran on dual
8-core Intel Xeon E5-2630v3 2.4 GHz CPUs with 128 GB
RAM. We compiled all benchmarks using LLVM 3.5.1 with
-O3 optimizations.

SOFRITAS ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

6.2 SofriTest Usability

In this section, we evaluate how well SofriTest can find and
fix concurrency bugs. We conduct this evaluation along three
dimensions: a user study assessing the debugging utility of
SOFRITAS, describing the concurrency bugs that SofriTest
finds in our workloads, and characterizing the accuracy and
utility of the atomicity refinement annotations that Sofri-
Test suggests.

6.2.1 User Study

We conducted a user study comparing the utility of an OFR
atomicity system like SOFRITAS with that of a conventional
data race detector, for debugging a simple parallel program
[16]. The study asked 45 graduate students in computer sci-
ence to add missing synchronization to a short program. The
program had a 3D vector class with a setter for each individ-
ual coordinate (x,y,z) and a normalize method that updated
all three components of the vector. Participants were asked
to ensure that the setter methods could execute in parallel
with each other and were expected to infer that fine-grained
locking was necessary. Participants were asked to synchro-
nize the code twice - once with the help of output from a
data race detector and once with the help of OFRException
reports. The order in which they were asked to synchronize
the code was randomized to account for learning effects.
The survey partitioned participants into three groups: (i)

thos who correctly synchronized both variants, (ii) thosewho
correctly synchronized one variant but not the other, and (iii)
thos who incorrectly synchronized both variants. Of partici-
pants that incorrectly added synchronization with one tool’s
output, but did so correctly with the other tool’s, participants
given the OFR tool’s output were statistically significantly
more likely to correctly add the synchronization. The result
suggests that using an OFR tool like SOFRITAS for adding
synchronization is easier than using outputs from a data race
detector, which are analogous to the exceptions generated
by previous memory consistency models [19, 33] – though
some consistency models [5, 58] raise delayed exceptions
only at region boundaries which are even less useful.

The survey asked students to rate their own knowledge of
parallel programming and also to define mutexes, data races,
and deadlocks to assess their prior knowledge. On average,
students rated their own parallelism expertise at 3.18 out of 7
and scored 3.84 points out of 7 total points in defining parallel
programming terms. We found no correlation between the
student’s parallelism expertise and their ability to correctly
synchronize either variant of the test code.

6.2.2 Detecting and Preventing Concurrency Bugs

SofriTest identified 6 concurrency bugs in PARSEC bench-
marks, and one inmemcached. Specifically, we found concur-
rency bugs in the pthreads versions of bodytrack (2 bugs),
ferret (1 bug), fluidanimate (1 bug), and streamcluster (2

bugs). We verified each of these bugs manually. The bugs in
ferret and streamcluster have been reported by prior work
[33]. To our knowledge, the bugs in bodytrack and fluidani-
mate have not been previously identified. SoPro prevents 5
of the 6 bugs automatically, requiring no annotations to do
so. For the final bug in fluidanimate, SofriTest raised an
OFRException and precisely identified the necessary anno-
tation to fix the bug with no need for manual reasoning. We
give three illustrative examples below of SofriTest’s ability
to detect concurrency bugs.

bodytrack In bodytrack, theWorkPoolPthread class inher-
its from the WorkerGroup class, which in turn inherits from
ThreadGroup and Runnable. In its constructor, theWorker-
Group class passes its this pointer to ThreadGroup::Create-
Threads, which spawns threads and calls the virtual Run()
method on the WorkerGroup object. In order to call the vir-
tual method, each thread must read the vptr (virtual table
pointer). The main thread simultaneously writes to the vptr
asWorkPoolPthread finishes construction. Although this is
well-defined in C++ [25] for single-threaded code, with par-
allelism this behavior constitutes an atomicity violation on
vptr. SoPro automatically prevents this failure by ensuring
the main thread holds a lock on vptr until the main thread
completes its work and joins with the workers.

fluidanimate In fluidanimate, an atomicity violation arises
due to a faulty manual optimization. The border array tracks
shared matrix entries, and the code locks only those shared
entries. On the native input, border is computed incorrectly,
causing some shared entries to be accessed without syn-
chronization. SofriTest automatically acquires a lock on
the cnumPars array that serializes accesses to indices of the
array that are shared by multiple threads. SofriTest sug-
gests a SofritasRelease() annotation on the accessed index
of the cnumPars array to prevent SOFRITAS from throwing
an OFRException when threads (non-concurrently) access
the same index of the array. If the programmer attempts
to perform the same faulty optimization with SOFRITAS
annotations, SofriTest detects the concurrency bug and
pinpoints the array accesses that violate the required atom-
icity of the application.

memcached To evaluate SofriTest’s performance on a
larger code base, we examined a known concurrency bug
found in memcached [49, 57]. In the memcached-127 bug,
a cached item is read and updated in separate critical sec-
tions. Both the read and update are protected by the same
lock, which prevents existing strong memory consistency
models from detecting the bug. We ran SofriTest on the
memcached-127 bug. With no additional annotations, Sofri-
Test detects the concurrency bug via an OFRException and
pinpoints the cache item update as the correct location for
an annotation.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA C. DeLozier et al.

6.2.3 Annotation Characterization

Atomicity refinement annotations are used to enable ap-
plication progress and prevent SofriTest from detecting
previously-found concurrency bugs. Columns 5-11 of Table 1
compare pthreads synchronization calls with the SofriTest
annotations needed to allow our programs to run exception-
free. Column 5 gives the number of ordering constructs used
in each application. bodytrack, canneal, fluidanimate, and
streamcluster use barriers, and bodytrack, dedup, and ferret
condition variable waits. Column 6 reports the number of
atomicity constructs (lock and unlock calls) present in the
pthreads version of each application. Systems that provide
SFR and RFR consistency require the same atomicity and
ordering constructs as pthreads.
The next three columns in Table 1 report the number of

annotations used to refine the coarse atomicity provided by
OFRs. Column 7 shows the number of SofritasRequireMu-
tex() annotations required. In all cases, SofriTest correctly
suggested that a SofritasRequireMutex() annotation is re-
quired by examining the lock state when an OFRException
occurs. If a lock has multiple shared readers and at least one
thread is attempting to acquire write privileges, a Sofritas-
RequireMutex() annotation is almost certainly required. The
SOFRITAS compiler analysis (Section 5.2) avoids the need
for 13 additional mutex annotations.

Column 8 reports the number of SofritasRelease() annota-
tions required for each application. In most cases, the number
of SofritasRelease() annotations closely corresponds to the
number of atomicity constructs required for the pthreads ver-
sion of the application. The disparity between the number of
necessary release annotations and pthreads locks can be ex-
plained by two major factors. First, the pthreads applications
often use coarse-grained locking to protect data structures,
whereas SOFRITAS automatically uses fine-grained locking
for all memory locations. For example, dedup uses hash-table
and memory-buffer structures that are protected by coarse-
grained locking in the pthreads version. Second, atomicity
violations exist in some of the PARSEC benchmarks that are
not prevented by the existing pthreads synchronization. We
discuss these atomicity violations more in Section 6.2.2.
Column 9 reports the number of SofritasEndOFR() or

SofritasContinueOFR() annotations that were added. dedup
and ferret both exhibit pipeline parallelism such that each
stage of the pipeline performs some actions and then en-
queues data for the next stage of the pipeline. Each enqueue
operation represents the end of the thread’s atomic actions
on the enqueued data, so we use a single SofritasEndOFR()
annotation in each benchmark to represent this. canneal
represents a different case in which SofritasRelease() annota-
tions handle all of the necessary releases for the benchmark,
making the batch lock release operations at each barrier wait
superfluous. To improve the performance of canneal, we add
a single SofritasContinueOFR() annotation to the barrier

wait to prevent the batch lock release. This optimization
yields a 4x speedup.

The final two columns of Table 1 report the ease of adding
annotations using SofriTest. When an OFRException oc-
curs, SofriTest suggests the location and type of annotation
that it thinks is required to refine atomicity and avoid the ex-
ception. Column 10 reports the number of annotations that
we found to be easy to place using the suggestions provided
by SofriTest. These annotations were either located at the
exact line suggested by SofriTest or close to the suggested
line. In the six close cases, SofriTest suggested placing an
annotation inside of control-flow, andwe determined that the
annotation should be placed after the control-flow structure
to cover multiple paths. A simple post-dominator analysis
could suggest the location of these close cases automatically.
Column 11 reports the number of annotations that were diffi-
cult to place. These annotations were localized to the queue
used by ferret. These difficult-to-place annotations arise due
to interleavings caused by existing annotations. Internally,
the queue relies on head and tail pointers that are protected
by mutexes. Initially, SofriTest correctly suggests a release
annotation on the tail pointer. Once this annotation has been
added, one of the two suggestions provided by SofriTest
on the next OFRException may be incorrect due to inter-
leavings caused by the existing annotation. For ferret, the
programmer must understand that checking whether the
queue is empty must be atomic with removing an item from
the queue. Despite the fact that not all of the suggestions
provided by SofriTest are exactly correct, any incorrect
suggestions still point to the correct source-code files and
data-structures, providing the programmer with a reason-
able starting point for resolving the OFRException. Further,
one of the two suggestions is correct, leaving the program-
mer with a multiple-choice question of how to resolve the
OFRException.

Beyond a comparable annotation burden, SofriTest pro-
vides fail-stop exceptions and precisely suggests fixes for
missing annotations. In contrast, missing locks in pthreads
and other models [5, 58] are not fail-stop and are not accom-
panied by code suggestions.

6.3 SoPro Evaluation

We evaluate the runtime performance, scalability, and mem-
ory overheads of SoPro as compared to pthreads execution.
We report average performance over 10 runs. We use a 4-
byte-per-lock mapping for all programs except bodytrack,
dedup, ferret, reverse_index, and pbzip2 which share byte-
sized data and therefore required a 1-byte-per-lock mapping.

6.3.1 Runtime Overheads

Figure 7 presents the runtime slowdown of SoPro over
pthreads. For each thread count, we normalize to the pthreads
execution for the same thread count. Across all thread counts,

SOFRITAS ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

0	
1	
2	
3	
4	
5	
6	

bla
ck
sc
ho
les
	

bo
dy
tra
ck
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

at
e	

str
ea
m
clu
ste
r	

sw
ap
>o
ns
	

gu
ps
	

pa
ge
ra
nk
	

his
to
gra
m
	

km
ea
ns
	

lin
ea
r_
re
gr
es
sio
n	

m
at
rix
_m
ul>
ply
	

pc
a	

re
ve
rse
_in
de
x	

str
ing
_m
at
ch
	

wo
rd
_c
ou
nt
	

pb
zip
2	

ge
om
ea
n	

Sl
ow

do
w
n	
(x
)	(
Lo
w
er
	is
	B
eI

er
)	

1	 2	 4	 8	 16	

Figure 7. Runtime overheads for SoPro with 1, 2, 4, 8 and 16 threads (light to dark bars) normalized to the pthreads baseline for the same
thread count.

SoPro’s average runtime slowdown is only 1.59x, substan-
tially lower than even the 1.99x overhead of Valor [5], the
most closely related prior work. Moreover, SoPro provides
potentially more useful consistency exceptions immediately
when a conflict occurs, rather than lazily reporting excep-
tions at a region’s end like Valor. To our knowledge, SoPro is
the lowest-overhead, coarse-grainedmemory consistency en-
forcement mechanism implemented for C and C++ programs.
With its low average overhead, including many benchmarks
with overheads below 2x, SoPro is a viable candidate for
providing strong atomicity guarantees even in deployed sys-
tems.
Some benchmarks had larger slowdowns that can be at-

tributed to frequent ordering operations (e.g., barriers) – Col-
umn 4 of Table 1 shows that fluidanimate and streamcluster
all perform many batch releases at the end of OFRs. Al-
though SoPro has highly-optimized batch releases, clearing
the thread-local shadow spaces too frequently can be detri-
mental to performance because locks must be reacquired
after each batch release. As listed in column 2 of Table 1, lin-
ear regression requires few lock checks because the majority
of memory accesses in the benchmark target a read-only
memory mapped file. SoPro can safely elide checks to this
read-only memory mapped file.

Figure 8 compares the scalability of SoPro with pthreads.
We show the scalability of each application using both pthreads
and SoPro. Each pthreads bar is normalized to the single-
threaded execution using pthreads, and each SoPro bar is
normalized to the single-threaded execution using SoPro.
SoPro scales similarly to pthreads, as can be seen in the
matching bar clusters.
For all of the 19 benchmarks, SoPro provides both in-

creased atomicity and a parallel speedup over the single-
threaded pthreads baseline. Although the absolute speedup
using SoPro is not as large as with an expert-synchronized
pthreads implementation, SoPro yields noticeable perfor-
mance benefits from parallel execution for all benchmarks.

6.3.2 Memory Usage

Figure 9 reports the memory overhead for SoPro compared
to pthreads execution with both using 16 threads. Memory

usage is recorded using the getrusage system call which re-
ports the maximum resident set size during the application’s
execution. The 1B bars report the overhead for using a 1-
byte-per-lock mapping, which is necessary for benchmarks
that share byte-sized data. In many cases, SoPro can use a
wider-granularity mapping of 4-bytes per lock, as shown in
the 4B bars. The benchmarks without 4B bars (bodytrack,
dedup, ferret, reverse_index) did not run correctly with a
4-byte mapping.

SoPro generally consumes less space with the 4Bmapping
(2.70x on average) than with the 1B mapping (4.19x on aver-
age). The exceptions fall into two cases. In benchmarks with
heaps under 50MB, like kmeans, there is not much SoPro
metadata to begin with, and the fixed costs of SoPro’s other
internal data structures magnify the memory overhead. A
similar situation arises in benchmarks with large memory
regions mapped for I/O, such as histogram, linear_regression
and string_match, as there is comparatively little heap on
which the 4B mapping can save space. Moreover, the SoPro
runtime system uses simple bump-pointer allocation to pro-
vide pages to the tcmalloc memory allocator. In future work,
this allocation scheme can be improved to maintain a free
page list instead, which should reduce memory overheads
further.

6.3.3 Optimizations

As discussed in prior sections, SoPro uses multiple low-
level optimizations to reduce performance overheads. To
efficiently release locks at OFR boundaries, SoPro callsmad-
vise instead of using memset. Figure 10 shows the overhead
of usingmemset instead of madvise as normalized to the So-
Pro baseline. On average, using memset incurs an overhead
of 3.88x over the baseline SoPro system.

SoPro also relies on efficient lock checks, which are much
more common than lock acquires. SoPro inlines lock checks
for increased efficiency because frequent function calls can
be expensive, especially when they involve saving and restor-
ing registers on the stack. Figure 11 details the overheads
incurred by SoProwhen no lock checks are inlined. On aver-
age, SoPro incurs a 1.73x overhead over the baseline system
when no lock checks are inlined.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA C. DeLozier et al.

0	

2	

4	

6	

8	

10	

12	

14	

bla
ck
sc
ho
les
	

bo
dy
tra
ck
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

at
e	

str
ea
m
clu
ste
r	

sw
ap
7o
ns
	

gu
ps
	

pa
ge
ra
nk
	

his
to
gra
m
	

km
ea
ns
	

lin
ea
r_
re
gr
es
sio
n	

m
at
rix
_m
ul7
ply
	

pc
a	

re
ve
rse
_in
de
x	

str
ing
_m
at
ch
	

wo
rd
_c
ou
nt
	

pb
zip
2	

Sp
ee
du

p	
(x
)	(
H
ig
he

r	
is
	B
eC

er
)	 1	 2	 4	 8	 16	

			pthr			OFR	

Figure 8. Scalability of SoPro as compared to the pthreads baseline. Each set of bars is normalized to single-threaded execution in the given
model.

0	

2	

4	

6	

8	

10	

12	

bla
ck
sc
ho
les
	

bo
dy
tra
ck
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

ate
	

str
ea
mc
lus
te
r	

sw
ap
=o
ns
	
gu
ps
	

pa
ge
ran
k	

his
to
gra
m	

km
ea
ns
	

lin
ea
r_
re
gre
ssi
on
	

ma
tri
x_
mu
l=p
ly	 pc

a	

re
ve
rse
_in
de
x	

str
ing
_m
atc
h	

wo
rd
_c
ou
nt
	

pb
zip
2	

ge
om
ea
n	

N
or
m
al
iz
ed

	P
ea
k	
M
em

or
y	

1B	 4B	

Figure 9.Memory overheads for SoPro compared to pthreads at
16 threads. 1B maps each byte to a lock and 4B maps 4 bytes to a
lock.

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

bla
ck
sc
ho
les
	

bo
dy
tra
ck
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

at
e	

str
ea
m
clu
ste
r	

sw
ap
=o
ns
	
gu
ps
	

pa
ge
ra
nk
	

his
to
gra
m
	

km
ea
ns
	
lre
g	

m
at
rix
	
pc
a	

re
ve
rse
	

str
ing
_m
at
ch
	

wo
rd
_c
ou
nt
	

pb
zip
2	

ge
om
ea
n	

Ru
n=

m
e	
O
ve
rh
ea
d	
(x
)	

>50x																	26.9	

Figure 10. Overheads for using memset instead of madvise

7 Related Work

SOFRITAS is motivated by several areas of prior work on
multithreaded programmability. Section 2 provides an in-
depth comparison of SOFRITAS with other strong memory
consistency models, and we describe SOFRITAS’s relation-
ship with other relevant work here.
Several schemes have been proposed for detecting se-

quential-consistency violations with custom hardware
support [18, 39, 42]. These schemes detect a cycle of data
races, which indicates that SC has been compromised, and

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

bla
ck
sc
ho
les
	

bo
dy
tra
ck
	

ca
nn
ea
l	

de
du
p	

fer
re
t	

flu
ida
nim

at
e	

str
ea
m
clu
ste
r	

sw
ap
>o
ns
	
gu
ps
	

pa
ge
ra
nk
	

his
to
gra
m
	

km
ea
ns
	
lre
g	

m
at
rix
	
pc
a	

re
ve
rse
	

str
ing
_m
at
ch
	

wo
rd
_c
ou
nt
	

pb
zip
2	

ge
om
ea
n	

Ru
n>

m
e	
O
ve
rh
ea
d	
(x
)	

11.4	

Figure 11. Overheads from not inlining lock checks

use speculation to rollback execution to before the SC vi-
olation occurred. SOFRITAS’s dependence cycle detection
works similarly, but is a pure-software approach and en-
forces serializability at OFR (instead of single-instruction)
granularity.

Data-centric synchronization schemes explicitly asso-
ciate locks with data and then assure that this locking disci-
pline is automatically enforced. In some systems [10, 50, 51]
a programmer specifies the variable-to-lock association. This
association can also be inferred [27] at the risk ofmissing syn-
chronization. Data-centric synchronization provides atomic-
ity at the granularity of function calls, which is sufficient for
many critical sections but not all. The queue implementation
in dedup requires that a lock acquired in a callee is held
across a function return and released by the caller. Releasing
the lock at the return introduces an atomicity violation bug.
In contrast, SOFRITAS’s OFR atomicity guarantees do not
rely on any specific code structure and provide the required
atomicity for dedup.
SOFRITAS shares a similar goal with techniques for de-

tecting atomicity violations [12, 13, 21, 22, 29–31, 34, 41,
54], which use heuristics to decide where atomic regions
should start and end, striking a balance between missing real
atomicity violations and reporting spurious ones. In contrast,

SOFRITAS ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

SOFRITAS is an execution model that provides strong atom-
icity guarantees that can prevent many atomicity failures,
even on the very first execution.

Transactionalmemory (TM) systems leverage programm-
er-specified atomic blocks [24, 47] that can be implemented
via optimistic or pessimistic concurrency [17, 38]. Like con-
ventional locking, programming with TM involves incre-
mentally strengthening a program’s atomicity instead of
SOFRITAS’s top-down atomicity refinement approach. TM
thus remains vulnerable to the atomicity violations and data
races that plague lock-based programming because a TM
system trusts the programmer to place transactions correctly.
Nevertheless, TM is a potentially valuable implementation
technique for future versions of SOFRITAS. In particular,
TM-inspired rollback techniques could allow automatic re-
covery from SOFRITAS exceptions, reducing the burden on
SOFRITAS programmers still further.
The TCC [23] and Automatic Mutual Exclusion (AME)

[26] systems place all code inside coarse-grained transac-
tions. Instead of providing a stronger execution model for
existing code, TCC and AME target new programming mod-
els: parallelization of sequential code and task parallelism,
respectively. Both schemes employ less precise notions of se-
rializability than SOFRITAS, and incur additional complexity
due to the use of optimistic concurrency which complicates
I/O and other irrevocable operations. Furthermore, neither
scheme provides automated guidance on atomicity refine-
ment as SOFRITAS does. Transaction boundaries also break
atomicity for all variables, unlike SOFRITAS which can relax
atomicity on individual variables at a time to minimize the
risk of atomicity violations.

Cooperative concurrency [55, 56] systems add yield an-
notations to a program to document where thread interfer-
ence can arise. Cooperability provides a sound summary
of the side effects of a program’s existing synchronization
but does not automatically enforce atomicity guarantees as
SOFRITAS does.

Program synthesis of parallel programs [8, 48, 52] often
works by refining overly-coarse atomicity under program-
mer guidance, similar to the SOFRITAS approach. SOFRI-
TAS’s dynamic techniques scale to much larger programs,
however, than synthesis currently supports.

8 Conclusion

We introduced the SOFRITAS system, which provides an
OFR serializability memory model that is stronger and more
precise than previous work. The SofriTest system detects
new and known concurrency bugs in PARSEC and mem-
cached. We show that the SoPro runtime system requires
just a 1.59x average runtime overhead and scales similarly
to pthreads up to 16 threads. SofriTest and SoPro require

a similar number of annotations compared to pthreads syn-
chronization, but SofriTest provides automatic, targeted
assistance in refining OFR atomicity when necessary.

References

[1] V. Balaji, B. Lucia, and R. Marculescu. Overcoming the data-flow limit
on parallelism with structural approximation. In WAX 2016, 2016.

[2] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Coredet:
A compiler and runtime system for deterministic multithreaded execu-
tion. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural

Support for Programming Languages and Operating Systems, ASPLOS
XV, pages 53–64, New York, NY, USA, 2010. ACM.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-

trol and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1987.

[4] C. Bienia. BenchmarkingModernMultiprocessors. PhD thesis, Princeton
University, January 2011.

[5] S. Biswas, M. Zhang, M. D. Bond, and B. Lucia. Valor: Efficient,
software-only region conflict exceptions. In Proceedings of the 2015

ACM SIGPLAN International Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA 2015, pages 241–
259, New York, NY, USA, 2015. ACM.

[6] C. Blundell, M. M. K. Martin, and T.Wenisch. Invisifence: Performance-
transparent memory ordering in conventional multiprocessors. In
Proceedings of the 36th Annual International Symposium on Computer

Architecture, June 2009.
[7] H.-J. Boehm and S. V. Adve. Foundations of the c++ concurrency

memory model. In Proceedings of the SIGPLAN 2008 Conference on

Programming Language Design and Implementation, PLDI ’08, 2008.
[8] M. Botinčan, M. Dodds, and S. Jagannathan. Proof-directed paralleliza-

tion synthesis by separation logic. ACM Trans. Program. Lang. Syst.,
35(2):8:1–8:60, July 2013.

[9] G. Bracha and S. Toueg. Distributed deadlock detection. Distributed
Computing, 2(3):127–138, 1987.

[10] L. Ceze, P. Montesinos, C. von Praun, and J. Torrellas. Colorama:
Architectural support for data-centric synchronization. In Proceedings

of the 13th Symposium on High-Performance Computer Architecture,
pages 133–144, Feb. 2007.

[11] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforce-
ment of Sequential Consistency. In Proceedings of the 34th Annual

International Symposium on Computer Architecture, June 2007.
[12] L. Ceze, C. von Praun, C. Caşcaval, P. Montesinos, and J. Torrellas.

Concurrency control with data coloring. In Proceedings of the 2008 ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness,
pages 6–10, 2008.

[13] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races.
Journal on Software Testing, Verification & Reliability, 13(4):220–227,
2003.

[14] L. Dalessandro and M. L. Scott. Sandboxing transactional memory. In
Proceedings of the 21st International Conference on Parallel Architectures

and Compilation Techniques, PACT ’12, pages 171–180, New York, NY,
USA, 2012. ACM.

[15] M. Das, G. Southern, and J. Renau. Section based program analysis to
reduce overhead of detecting unsynchronized thread communication.
In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP 2015, pages 283–284, New
York, NY, USA, 2015. ACM.

[16] C. DeLozier, Y. Peng, A. Eizenberg, B. Lucia, and J. Devietti. Orca:
Ordering-free regions for consistency and atomicity. Technical Report
MS-CIS-16-01, University of Pennsylvania, May 2016.

[17] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Pro-

ceedings of the 20th International Conference on Distributed Computing,
DISC’06, pages 194–208, Berlin, Heidelberg, 2006. Springer-Verlag.

ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA C. DeLozier et al.

[18] Y. Duan, D. Koufaty, and J. Torrellas. Scsafe: Logging sequential consis-
tency violations continuously and precisely. In 2016 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages
249–260, March 2016.

[19] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A race and transaction-
aware java runtime. In Proceedings of the SIGPLAN 2007 Conference

on Programming Language Design and Implementation, pages 245–255,
June 2007.

[20] Engadget. Intel announces Edison: a 22nm dual-core PC the size of an SD

card, Jan. 2014. http://www.engadget.com/2014/01/06/intel-edison/.
[21] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity checker

for multithreaded programs. In Proceedings of The 31st ACM SIG-

PLAN/SIGACT Symposium on Principles of Programming Languages

(POPL), pages 256–267, Jan. 2004.
[22] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and complete

dynamic atomicity checker for multithreaded programs. In Proceedings
of the SIGPLAN 2008 Conference on Programming Language Design and

Implementation, PLDI ’08, pages 293–303, 2008.
[23] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen,

C. Kozyrakis, and K. Olukotun. Programming with transactional co-
herence and consistency (tcc). In Proceedings of the 11th International

Conference on Architectural Support for Programming Languages and

Operating Systems, pages 1–13, Oct. 2004.
[24] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural

support for lock-free data structures. In Proceedings of the 20th Annual

International Symposium on Computer Architecture, pages 289–300,
May 1993.

[25] International Standard ISO/IEC 14882:2011. Programming Languages –

C++. International Organization for Standards, 2011.
[26] M. Isard and A. Birrell. Automatic mutual exclusion. HotOS ’07, pages

3:1–3:6, 2007.
[27] S. Kempf, R. Veldema, and M. Philippsen. Compiler-guided identi-

fication of critical sections in parallel code. In Proceedings of the

22nd International Conference on Compiler Construction, pages 204–223,
2013.

[28] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. C-28(9):690–691, Sept. 1979.

[29] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou.
Muvi: Automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs. In Proceedings of the

21st ACM Symposium on Operating Systems Principles, pages 103–116,
Oct. 2007.

[30] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity vio-
lations via access interleaving invariants. In Proceedings of the 12th

International Conference on Architectural Support for Programming

Languages and Operating Systems, page 37âĂŞ48, Oct. 2006.
[31] B. Lucia and L. Ceze. Finding concurrency bugs with context-aware

communication graphs. In Proceedings of the 42nd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 553–563, Nov.
2009.

[32] B. Lucia, L. Ceze, and K. Strauss. Colorsafe: Architectural support for
debugging and dynamically avoiding multi-variable atomicity viola-
tions. In Proceedings of the 37th Annual International Symposium on

Computer Architecture, ISCA ’10, pages 222–233, New York, NY, USA,
2010. ACM.

[33] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H.-J. Boehm. Conflict
exceptions: Simplifying concurrent language semantics with precise
hardware exceptions for data-races. In Proceedings of the 37th Annual

International Symposium on Computer Architecture, ISCA ’10, pages
210–221, New York, NY, USA, 2010. ACM.

[34] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-aid: Detecting
and surviving atomicity violations. In Proceedings of the 35th Annual

International Symposium on Computer Architecture, pages 277–288,
June 2008.

[35] S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. M. K. Martin, P. Sewell, and D. Williams. An
axiomatic memory model for power multiprocessors. In Proceedings

of the 24th International Conference on Computer Aided Verification,
CAV’12, pages 495–512, Berlin, Heidelberg, 2012. Springer-Verlag.

[36] J. Manson, W. Pugh, and S. V. Adve. The java memory model. In Pro-

ceedings of The 32nd ACM SIGPLAN/SIGACT Symposium on Principles

of Programming Languages (POPL), pages 378–391, Jan. 2005.
[37] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy.

Drfx: A simple and efficient memory model for concurrent program-
ming languages. In Proceedings of the SIGPLAN 2010 Conference on

Programming Language Design and Implementation, pages 351–362,
June 2010.

[38] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: Synchro-
nization inference for atomic sections. In Proceedings of The 32nd ACM

SIGPLAN/SIGACT Symposium on Principles of Programming Languages

(POPL), pages 346–358, Jan. 2006.
[39] A. Muzahid, S. Qi, and J. Torrellas. Vulcan: Hardware support for

detecting sequential consistency violations dynamically. In Proceed-

ings of the 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO-45, pages 363–375, Washington, DC, USA,
2012. IEEE Computer Society.

[40] J. Ouyang, P. M. Chen, J. Flinn, and S. Narayanasamy. . . . and region
serializability for all. In Presented as part of the 5th USENIX Workshop

on Hot Topics in Parallelism, Berkeley, CA, 2013. USENIX.
[41] C.-S. Park and K. Sen. Randomized active atomicity violation detection

in concurrent programs. SIGSOFT ’08/FSE-16, pages 135–145, 2008.
[42] X. Qian, J. Torrellas, B. Sahelices, and D. Qian. Volition: Scalable and

precise sequential consistency violation detection. In Proceedings of

the Eighteenth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’13, pages
535–548, New York, NY, USA, 2013. ACM.

[43] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. In
Proceedings of the 2007 IEEE 13th International Symposium on High Per-

formance Computer Architecture, HPCA ’07, pages 13–24, Washington,
DC, USA, 2007. IEEE Computer Society.

[44] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Un-
derstanding power multiprocessors. In Proceedings of the 32Nd ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation, PLDI ’11, pages 175–186, New York, NY, USA, 2011. ACM.
[45] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, andM. Kulkarni. Hybrid

static–dynamic analysis for statically bounded region serializability.
In Proceedings of the 20th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages
561–575, Mar. 2015.

[46] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, andM. O. Myreen. X86-tso:
A rigorous and usable programmer’s model for x86 multiprocessors.
Commun. ACM, 53(7):89–97, July 2010.

[47] N. Shavit and D. Touitou. Software transactional memory. In Proceed-

ings of the 14th ACM Symposium on Principles of Distributed Computing,
pages 204–213, Aug. 1995.

[48] A. Solar-Lezama, C. G. Jones, and R. Bodik. Sketching Concurrent
Data Structures. In Proceedings of the SIGPLAN 2008 Conference on

Programming Language Design and Implementation, PLDI ’08, pages
136–148, 2008.

[49] University of Michigan. Concurrency Bugs, 2012.
https://github.com/jieyu/concurrency-bugs.

[50] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In Proceedings of The 32nd

ACM SIGPLAN/SIGACT Symposium on Principles of Programming Lan-

guages (POPL), pages 334–345, Jan. 2006.
[51] M. Vaziri, F. Tip, J. Dolby, C. Hammer, and J. Vitek. A type system

for data-centric synchronization. In Proceedings of the 24th European

SOFRITAS ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA

conference on Object-oriented programming, pages 304–328, 2010.
[52] M. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of

synchronization. In Proceedings of The 37th ACM SIGPLAN/SIGACT

Symposium on Principles of Programming Languages, POPL ’10, pages
327–338, 2010.

[53] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms
for store-wait-free multiprocessors. In Proceedings of the 34th Annual

International Symposium on Computer Architecture, June 2007.
[54] M. Xu, R. Bodík, and M. D. Hill. A serializability violation detector

for shared-memory server programs. In Proceedings of the SIGPLAN

2005 Conference on Programming Language Design and Implementation,
PLDI ’05, pages 1–14, 2005.

[55] J. Yi, T. Disney, S. N. Freund, and C. Flanagan. Cooperative types
for controlling thread interference in java. In Proceedings of the 2012

International Symposium on Software Testing and Analysis, ISSTA 2012,
pages 232–242, New York, NY, USA, 2012. ACM.

[56] J. Yi, C. Sadowski, and C. Flanagan. Cooperative reasoning for preemp-
tive execution. In Proceedings of the 16th ACM Symposium on Principles

and Practice of Parallel Programming, PPoPP ’11, pages 147–156, New
York, NY, USA, 2011. ACM.

[57] J. Yu and S. Narayanasamy. A case for an interleaving constrained
shared-memory multi-processor. In Proceedings of the 36th Annual

International Symposium on Computer Architecture, ISCA ’09, 2009.
[58] M. Zhang, S. Biswas, and M. D. Bond. Avoiding consistency exceptions

under strongmemorymodels. In Proceedings of the 2017 ACM SIGPLAN

International Symposium on Memory Management, ISMM 2017, pages
115–127, New York, NY, USA, 2017. ACM.

	Abstract
	1 Introduction
	2 Background: Strong Consistency Models
	2.1 Why is OFR atomicity needed?
	2.2 Conflict Serializability

	3 OFR Atomicity with SOFRITAS
	3.1 Core Algorithm
	3.2 SOFRITAS API
	3.3 Precise OFR Exceptions
	3.4 Resolving Exceptions with Annotations
	3.5 Working with Library Code

	4 Proof of Correctness
	5 Implementing OFR Atomicity
	5.1 Lock Implementation
	5.2 Compiler Support

	6 Evaluation
	6.1 Experimental Setup
	6.2 SofriTest Usability
	6.3 SoPro Evaluation

	7 Related Work
	8 Conclusion
	References

