
Finding Concurrency Bugs with
Context-Aware Communication Graphs

Brandon Lucia Luis Ceze

Department of Computer Science and Engineering, University of Washington

{blucia0a,luisceze}@cs.washington.edu
http://sampa.cs.washington.edu

ABSTRACT
Incorrect thread synchronization often leads to concurrency bugs
that manifest nondeterministically and are difficult to detect and fix.
Past work on detecting concurrency bugs has addressed the general
problem in an ad-hoc fashion, focusing mostly on data races and
atomicity violations.

Using graphs to represent a multithreaded program execution is
very natural, nodes represent static instructions and edges repre-
sent communication via shared memory. In this paper we make the
fundamental observation that such basic context-oblivious graphs
do not encode enough information to enable accurate bug detec-
tion. We propose context-aware communication graphs, a new kind
of communication graph that encodes global ordering information
by embedding communication contexts. We then build Bugaboo,
a simple and generic framework that accurately detects complex
concurrency bugs. Our framework collects communication graphs
from multiple executions and uses invariant-based techniques to de-
tect anomalies in the graphs.

We built two versions of Bugaboo: BB-SW, which is fully im-
plemented in software but suffers from significant slowdowns; and
BB-HW, which relies on custom architecture support but has neg-
ligible performance degradation. BB-HW requires modest exten-
sions to a commodity multicore processor and can be used in de-
ployment settings. We evaluate both versions using applications
such as MySQL, Apache, PARSEC, and several others. Our results
show that Bugaboo identifies a wide variety of concurrency bugs,
including challenging multivariable bugs, with few (often zero) un-
necessary code inspections.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures (Multiprocessors);
D.2.5 [Software Engineering]: Testing and Debugging;
D.1.3 [Programming Techniques]: Concurrent Programming

General Terms
architecture support, programmability, reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

1. INTRODUCTION
As multithreaded software becomes ever more important, we

need to enable programmers to productively write and debug con-
current programs. This has motivated the development of several
methods and tools for debugging concurrency errors.

There are several categories of concurrency bugs. The main cat-
egories discussed in the literature are data races, locking discipline
violations, atomicity violations and ordering violations. Past work
on concurrency error debugging typically covered each category
separately. For example, RecPlay [17] detects data races and pro-
vides replay capabilities; AVIO [9] and Atom-Aid [10] detect atom-
icity violations using heuristics based on identifying unserializable
interleavings; and Eraser [18] detects locking discipline violations
using its lock-set algorithm. While these systems greatly help in
identifying concurrency bugs, they address the general problem in
a piecemeal way. Moreover, current tools do not adequately ad-
dress less well-studied classes of bugs such as ordering violations
and bugs involving multiple variables [8].

Communication graphs are a convenient representation of a mul-
tithreaded program execution. In a basic communication graph,
nodes represent memory instructions and edges represent commu-
nication via shared-memory. Concurrency errors lead to abnormal
inter-thread communication and may therefore manifest themselves
as anomalies in communication graphs. Because multithreaded ex-
ecution is nondeterministic and consequently bugs manifest inter-
mittently, different executions lead to different graphs. By examin-
ing the differences between many graphs, it is possible to identify
anomalous communication and consequently where bugs are likely
to be. The biggest advantage of this approach is that it is general,
as it does not rely on heuristics that are specific to a class of bugs.
The key challenge, however, is building a communication graph in
which enough relevant information is encoded. If insufficient in-
formation is encoded, bugs may not render as graph anomalies.

In this paper, we make the fundamental observation that basic
communication graphs do not encode enough information to en-
able general concurrency bug detection. We address this problem
by proposing context-aware communication graphs, a new kind of
communication graph that uses communication context to encode
access ordering information. Communication contexts are formed
by capturing the sequence of all recent communication events ob-
served by a thread. We then develop Bugaboo, a complete system
that leverages these graphs to provide efficient and accurate bug
detection, useful both in development and deployment situations.

This paper makes the following contributions: (1) we propose
context-aware communication graphs; (2) we propose two invariant-
based approaches to processing communication graphs and accu-
rately locating bugs in code: one fully automatic and one semi-

int length; // protected by lock L
char *str; // protected by lock L

...
lock(L);
tptr = str;
unlock (L);
...
lock(L);
tlen = length;
unlock(L);

Thread 1
...
lock(L);
str = newstr;
unlock(L);
...
lock(L);
length = 15;
unlock(L);

Thread 2

(a)
Multivariable atomicity violation.

Thread 1 reads inconsistent str/length.

void qDelete (Q *q)
{
 done = true;
 ...
 pthread_cond_destroy(q->notEmpty);
 delete q->notEmpty;
 ...
}

Thread 1 Thread 2

(b)
Ordering violation. If qDelete() in Thread 1 is called before

Thread 2 is waiting on the conditional variable, program crashes.

void *decompress_consumer(. . .)
{
 for(;;)
 {
 ...
 pret = pthread_cond_timedwait(q->notEmpty,
 ... q->mut,
 &waitTimer);
 if(done) return 0;
 }
}

Figure 1: Examples of a multivariable atomicity violation and an ordering violation. Dashed arrows represent buggy
interleaving.

automatic; (3) we describe BB-SW, a software-only implementation
of Bugaboo and propose BB-HW, which is based on a set of ar-
chitecture extensions to a commodity multicore system that brings
performance overheads in collecting context-aware communication
graphs to nearly zero; (4) we show how BB-HW can be used in pro-
duction runs; and (5) we evaluate BB-SW and BB-HW and show
that they are able to identify complex bugs (including multivariable
ones), requiring just a few code inspections by the programmer.

The remainder of this paper is organized as follows. Section 2
describes common types of concurrency errors. Section 3 shows
why context-oblivious communication graphs limit generic bug de-
tection and explains how our context-aware communication graphs
solve this problem. Section 4 describes Bugaboo’s implementation.
Section 5 elaborates on our invariant-based debugging framework.
Section 6 evaluates bug detection accuracy and characterizes both
of our implementations. Finally, Section 7 discusses related work
and Section 8 concludes.

2. CONCURRENCY BUGS
There are several types of concurrency errors. Arguably, the

most well known is a data race. A data race occurs when two or
more memory operations in different threads, at least one of which
is a write, access the same memory location and are not ordered by
a happens-before relationship (synchronization). Absence of data
races, however, does not imply lack of concurrency defects. The
other major types of non-deadlock concurrency bugs are atomic-
ity violations and ordering violations, and both can occur in the
absence of data races.

Atomicity violations [4] happen when memory operations sup-
posed to be executed atomically are not enclosed inside the same
critical section. Figure 1(a) shows an atomicity violation involving
multiple variables: the update of str and len in Thread 2 should
be atomic but they interleave the read accesses in Thread 1, which
will get inconsistent data — old value of str, but new value of
len.

Ordering violations happen when memory accesses in differ-
ent threads happen in an unexpected order. In Figure 1(b) we
show an example: if qDelete() in Thread 1 is called imme-
diately before Thread 2 waits on the conditional variable (call to
pthread_cond_timedwait()), the program crashes. In a
correct execution, the call to pthread_cond_timedwait()
in the final iteration (done = true) of the for loop in Thread 2

should be ordered before the call to qDelete() in Thread 1, but
this constraint is absent in the code.

Lu et. al [8] did a comprehensive study of concurrency bugs that
appear in open-source applications such as Mozilla, MySQL and
Apache. The study showed that the vast majority (97%) of non-
deadlock concurrency bugs are either atomicity violations or or-
dering violations. Moreover, the study points out that one-third
of the non-deadlock concurrency bugs involved multiple variables.
Most previous work on concurrency bug detection focused on data
races [15, 17], locking discipline violation [18] and atomicity vi-
olations [9, 10, 19]. General multivariable bugs and ordering vio-
lations have not been thoroughly addressed in prior work. We aim
at providing a completely general framework for concurrency bug
detection by not relying on any heuristics specific to one type of
bug.

3. CONTEXT-AWARE COMMUNICATION
GRAPHS

3.1 Overview
The approach to concurrency bug detection we are exploring in-

volves collecting inter-thread communication graphs from multi-
ple executions, and then processing them to detect anomalies that
are likely the result of concurrency bugs. There are many ways to
process graphs, all of which depend on the fact that the presence
or absence of certain edges distinguish a correct execution’s graph
from an incorrect execution’s graph. This way, graph differences
directly reflect buggy communication.

Figure 2 illustrates this concept. Figure 2(a) shows an ordering
bug taken from MySQL-4.1.8. Figure 2(b) shows the communica-
tion graphs obtained from a correct (top) and an incorrect execution
(bottom). In the incorrect execution there is no communication be-
tween the store to dynamicId in Thread 1 and the load in Thread
2, so Thread 2 reads uninitialized data. Comparing these graphs
directly points to the communication anomaly in the execution. We
discuss graph processing in more detail in Section 5.

The key in using communication graphs for bug detection is how
to build the graph and consequently what information is encoded.
We now show that a basic context-oblivious communication graph
does not encode sufficient information for a general approach to
bug detection. We then show how the new graph abstraction we
propose addresses this problem.

NodeState::setDynamicId(...,int id,...)
{ ...
 dynamicId = id;
 ...
}

int MgmtSrvr::Status(...)
{ ...
 myId = node.dynamicId;
 ...
}

Thread 1 Thread 2

Ordering violation bug from MySQL. Thread 1 initializes dynamicId. In
incorrect executions, Thread 2 reads the data before it is initialized.

(a)

✓

✕

Graphs from multiple executions
classified as correct or incorrect.

(b)

Figure 2: High-level view of detecting concurrency bugs based on communication graph anomalies. Markers represent
memory operations involving shared data.

3.2 Context-Oblivious Communication is
Insufficient

In a basic, context-oblivious, communication graph, concurrency
bugs may lead to edges that are only present in graphs of buggy exe-
cutions, therefore simple graph differences might point to bugs. For
example, consider the bug in Figure 3(a), extracted from MySQL:
if the read access of log_type in Thread 2 interleaves between
the two writes in Thread 1, the bug manifests itself. Figure 3(b)
shows a communication graph resulting from a union of graphs
from a correct and an incorrect execution. The bad interleaving
in (a) leads to an edge (dashed) in (b) that only appears in buggy
executions.

Even though context-oblivious graphs can be used to detect some
bugs, they can not be used to detect many other bugs. This is be-
cause many buggy interleavings lead to edges that are also present
in graphs from correct executions. Figure 4(a) shows a typical mul-
tivariable concurrency bug, in which a string/length pair of vari-
ables is not updated atomically. The read accesses of str and len
in Thread 2 will get inconsistent data if they interleave the write
accesses in Thread 1. However, as Figure 4(b) shows, this inter-
leaving does not lead to a unique edge in the communication graph,
making it impossible to detect the bug by considering graph differ-
ences. In summary, the edges in the communication graph that are
the result of the bad interleaving are also present in a graph from a
correct execution. What is missing in this basic context-oblivious
communication graph is a notion of relative order of communica-
tion events — nodes solely represent static instructions, and there
is no notion of order between edges.

3.3 Embedding Ordering in Communication
Graphs

One direct way of guaranteeing that there is enough ordering in-
formation in a communication graph is to have each node represent
a dynamic memory operation. This is clearly impractical because
the graph size would be unbounded, growing with execution time.
We propose a new kind of communication graph that encodes in-
formation about the relative order of communication but is bounded
in size and not significantly larger than a basic, context-oblivious,
communication graph.

The key aspect of the graph we propose is that nodes represent a
combination of static memory instruction and the communication
context when the instruction was executed. We call these context-
aware communication graphs. The communication context of a
memory instruction is the sequence of communication events ob-
served by a thread immediately prior to the execution of the mem-
ory instruction; it is obtained by monitoring the communication
events observed by a thread, regardless of the data address involved,
and inserting them in a fixed-size FIFO queue.

There are four types of communication events observed by a lo-

cal thread: (1) LcRd, a read of data recently written by a remote
thread; (2) LcWr, a write to data recently read by a remote thread;
(3) RmRd, a remote read of data recently written locally; and (4)
RmWr, a remote write to data recently read or written locally. The
contents of the FIFO queue is the context. Note that the communi-
cation events that make up the context are not the result of accesses
to a specific data address. This is exactly what we need because
we want to capture the notion of global ordering across memory
accesses irrespective of data address. Context size is arbitrary, and
the longer it is, the more ordering information is encoded in the
graph.

Formally, a context-aware communication graph is defined as
G = (V, E), where v ∈ V is a tuple (inst, ctx), and each edge
(u, v) ∈ E is a pair of these tuples.

An edge ((u.inst, u.ctx), (v.inst, v.ctx)) is present in G if dur-
ing the execution from which G was constructed, u.inst commu-
nicated with v.inst, and when u.inst executed its processor con-
text was u.ctx and when v.inst executed its processor context was
v.ctx.

Each node in a context-oblivious communication graph maps to
multiple nodes in a context-aware communication graph from the
same execution. More precisely, if the context-oblivious communi-
cation graph of an execution has Ns nodes, a context-aware com-
munication graph of the same program execution will have at most
Ns×C nodes, where C is number of all possible contexts in which
a memory access instruction can execute. Since there are four types
of events, C = 4S , where S is the context size. We experimentally
determined (Section 6.2.1) that a context of five events (1024 pos-
sible contexts) is enough to capture enough ordering to detect all
types of concurrency bugs discussed in the literature. In practice,
the addition of context does not mean that a context-aware com-
munication graph is 1024 times bigger, since each node executes
in a small fraction of the possible contexts. Our experiments (Sec-
tion 6.5) never showed an increase larger than 50-fold.

Figure 5 shows how context-aware communication graphs can be
used to reveal concurrency bugs. Figure 5(a) shows multiple execu-
tions of the buggy code in Figure 4(a). For each execution, it shows
the memory access interleavings and the symbols in parenthesis
represent the communication context of each thread at the point
when the communication happened. For example, refer to the first
execution (top) in Figure 5(a): the first operation on the left (write
to str) was executed after two remote reads had been received by
the local node, so the context at that point is (RmRd, RmRd); after
that, the context becomes (RmRd,RmRd,LcWr) at the point when
the next operation on the left is executed (write to len). Note how
the context adds ordering information to the communication graph:
Figure 5(b) shows that it is now possible to distinguish in the graph
communication between write to str and read from str depend-
ing on when in the execution the communication happened, unlike
the basic communication graph in Figure 4(b). Recall that basic

if(log_type != CLOSED){
 //Update Logged
}else{
 //Update Erroneously Ignored
}

(a)
Atomicity Violation bug from MySQL. Arrows represent

interleavings. Dashed arrow represents buggy interleaving.

(b)
Communication graph. Dashed edge
appears in incorrect execution only.

log_type = CLOSED;
...
log_type = LOG_BIN;

Thread 1 Thread 2

Figure 3: Atomicity violation example and how a communication graph can reveal the bug.

(a)
Multi-variable atomicity violation example. Arrows
represent a few possible interleavings. Dashed

arrows represent buggy interleaving.

{ ...
 __ = str;
 ...
 __ = len;
}

{ ...
 str = newStr;
 ...
 len = newLen;
}

Thread 1 Thread 2

char *str; // shared variables
int len;

(b)
Communication graph. Dashed edges represent

buggy communication. Edges alone can not
distinguish correct/incorrect communication.

Figure 4: A basic communication graph is often not enough to detect concurrency bugs. Edges can not distinguish
correct and incorrect executions.

communication graphs are limited in exposing concurrency bugs
because there are no edges that are only present in the graphs of
incorrect executions. Conversely, with context-aware graphs there
are edges that are only present in graphs of incorrect executions.

4. IMPLEMENTATION

4.1 BB-SW: Software-Only Bugaboo
BB-SW uses binary instrumentation to monitor memory accesses

and build the communication graph. It has three key data-structures:
(1) a table that maps each memory location to the instruction ad-
dress, thread ID and communication context of the last writer, which
can be configured to use word or line granularity memory addresses;
(2) an array that keeps the communication context of each thread;
and (3) the context aware communication graph itself.

Whenever a thread reads from or writes to a memory location
whose last writer was not itself, BB-SW adds a new edge to the
graph. The edge’s source is the last writer (instruction address, con-
text) and the edge’s sink is the current instruction plus its thread’s
current context. This policy captures both WAW and RAW edges.

To maintain the communication context, whenever a thread ac-
cesses a location last written by another thread, it records a corre-
sponding LcRd or LcWr event identifier in its context FIFO queue.
The thread which last wrote the memory location records a cor-
responding RmRd or RmWr event in its context. The size of the
event FIFO queue is fixed at five and when full, the oldest element
is discarded.

4.2 BB-HW: Architectural Support for
Context-Aware Communication Tracking

While BB-SW provides acceptable performance for debugging,
collecting communication graphs purely in software can lead to

significant performance degradation. We now describe BB-HW,
which uses a set of modest hardware extensions to reduce over-
heads in monitoring communication between memory instructions
and to keep track of context. Actual graph processing for debug-
ging in BB-HW still happens in software.

The cache coherence protocol in typical shared-memory multi-
processor systems already provides most of the support BB-HW
needs, since all communication carried between processors hap-
pens via coherence messages. Broadly, beyond what a typical MESI
coherence protocol offers, we need information about the instruc-
tion addresses that lead to coherence messages and a way to store
communication events as they happen, such that a software com-
ponent can periodically read them. BB-HW has five components:
(1) a per-processor context register that keeps track of recent com-
munication events; (2) coherence message extensions to carry pro-
ducer/consumer instruction information; (3) cache-line extensions
(meta-data) to keep track of producer/consumer instructions and
context; (4) a software-visible table to store communication edges
as they happen; and (5) a thin software component that periodi-
cally reads the graph edges collected. Figure 6 shows an overview
of BB-HW’s extensions to a commodity multiprocessor.

4.2.1 Keeping Track of Context
The four communication events discussed in Section 3.3 map

directly to cache coherence events, since we only consider cache-
to-cache transfers as communication. We give each relevant cache
coherence event a two-bit code: local read miss (LcRd); local write
miss or upgrade miss (LcWr); incoming invalidate request (RmWr);
and incoming read request (RmRd). Recall that to maintain the
communication context we keep a FIFO queue of recent communi-
cation events. The context register itself is a simple shift register,
and the event code is shifted in as the event happens. We want to
encode global communication across addresses, therefore we dis-

(∅)

(RemRd)

(RemWr)

(RemWr, LocRd)

(RemWr, RemWr)

(RemWr, RemWr, LocRd)

(∅)

(LocWr, RmRd, RmRd)

(LocWr)

(RemRd, RemRd)

(RemRd, RemRd, LocWr)

(b)
Context-aware communication graph.

Dashed edges come from bad interleavings.

(a)
A few of the possible interleavings and their corresponding
communication contexts from code in Figure 4(a). Dashed

arrows correspond to bad interleavings.

 str = newStr;(∅)

 ts = str;

 tl = len;

(RmWr)

(RmWr, LcRd)

 str = newStr;
 ...
 len = newLen;

(RmRd, RmRd)

(RmRd, RmRd, LcWr)

 ts = str;

 tl = len;

(∅)

(LcRd)

 str = newStr;
 ...
 len = newLen;

(∅)

(LcWr)

 ts = str;

 tl = len;

(RmWr, RmWr)

(RmWr, RmWr, LcRd)

Thread 1 Thread 2

(∅)

(RmRd)

len = newLen; (LcWr, RmRd, RmRd)

(∅)

(RmWr, LcRd, LcRd)

(∅)

Non-buggy
Execution

Buggy
Execution

Non-buggy
Execution

(context)(context)

...

...

...

...

...

...

(RmWr)

...
(LcRd, LcRd)

(LcRd, LcRd, RmWr)

(LcWr)

(LcWr, RmRd)

(LcWr, LcWr)

(LcWr, LcWr, RmRd)

Figure 5: Context-aware communication graph exam-
ple revealing the multivariable atomicity violation in Fig-
ure 4(a), which can not be revealed by a basic context-
oblivious communication graph.

regard the data address of the events. Each processor in the system
has its own context register (Figure 6(b)). As in BB-SW, we keep
five events of context, so our context registers are 10 bits long.

4.2.2 Cache Meta-Data and Coherence Extensions
Precisely keeping track of communicating instructions requires

keeping last-writer information at the granularity of words (or po-
tentially bytes) and for the whole memory. This is clearly too ex-
pensive to do in hardware. We chose two simplifications to reduce
hardware complexity at the cost of some information loss. First,
we track communication at cache-line granularity. False sharing
might lead to edges that are not actual communication. Second, we
only monitor inter-thread communication that happens via cache-
to-cache transfers, which might miss edges that are present in the
actual communication. As our data shows (Section 6.3), the infor-

Meta-Data

(b)
Extensions to a bus-based commodity multiprocessor.

Ctx
P1

$

Ctx
P2

$

Ctx
Pn

$

CT

(a)
Extensions to a typical cache line.

Context Writer Instruction Address

10 Bits 64 Bits

Tag, Data, etc.

Figure 6: BB-HW architectural extensions (shaded) to a
typical multiprocessor.

mation loss is not significant and does not limit the bug detection
capability of our techniques.

We add meta-data to each cache line to keep track of the instruc-
tion address (virtual address) and context when the line was written
to, which is the source of a communication edge. The meta-data in-
cludes a field that stores the instruction address (i.e., 64 bits) and a
field that stores the context (10 bits) from when the data was pro-
duced, i.e., when the store instruction was executed. Therefore, the
total overhead per cache line is 64 + 10 = 74 bits per cache line1.
Figure 6(a) illustrates our extensions to the cache line.

The meta-data is updated when a processor writes to a line that
is not in exclusive nor modified state, i.e., during a write or up-
grade miss. As a result, meta-data updates are only as frequent
as write/upgrade misses. Without loss of generality, we assume
the underlying system has a MESI cache coherence protocol. We
augment the following coherence messages to include information
about the instructions involved in the communication:

Read reply. The supplier sends the meta-data of the corresponding
line. This keeps track of read-after-write (RAW) communication.

Invalidate reply (ack). The supplier sends the meta-data of the line
that was invalidated. This is used to keep track of write-after-write
(WAW) communication.

4.2.3 Communication Table
The purpose of the Communication Table (CT) is to temporar-

ily store communication edges as they happen before the software
component reads them. It is organized as a simple queue, where
each entry contains the instruction address and context of both the
source and destination of a communication edge. Thus, the size
of each entry is (64 + 10) × 2 = 148 bits. The CT, shown in
Figure 6(b), can be organized either as a centralized or distributed
data-structure. Since there are no global consistency properties that
need to be kept, each processor can have its own CT, posing no
scalability issues.

Three events leads to a write to the CT:

Read reply. The source is set to the meta-data of the supplied
line. The destination is set to the instruction address of the local
load instruction that caused the miss and the context when the miss
happened. This captures RAW edges.

1The instruction address can be easily hashed into a smaller value
if overhead is an issue.

Invalidate reply. Same as above, except that the destination is set
to the address of the local write instruction that caused the request
and the context when the request was originated. This captures
WAW edges.

Read miss serviced from memory. The source is set to NULL
and the destination set to the local instruction and context when the
miss happened. This captures information about instructions that
typically do not read shared data.

5. BUG DETECTION
Bugaboo uses two basic methods of bug detection with context-

aware communication graphs: labeled and unlabeled. In the la-
beled method, the programmer classifies each execution as buggy
or non-buggy. Conversely, the unlabeled method is fully automatic,
the programmer does not need to classify the executions. Below we
describe each method and outline how to leverage BB-HW in de-
ployment situations.

Bug detection using unlabeled runs. The most automatic way
of using graphs for bug detection is to collect graphs from a num-
ber of executions then determine rare communication events that
are likely to be the result of bugs. The crucial observation is that
buggy communication is rare. Specifically, our debugging method
based on unlabeled runs produces a ranked list of code points2 for
the programmer to examine. The rank for each code point, CP ,
is defined as: rankCP =

P
x∈XCP

FCP,x

FCP,∗
, where XCP is the set of

contexts in which CP executed, FCP,x is the number of runs in
which code point CP executed in context x, and FCP,∗ is the total
number of times CP executed regardless of context and across all
runs. We sort the list in ascending order. In summary, code points
that executed in rare contexts are ranked higher. In Section 6.2 we
demonstrate that this method is very effective at detecting concur-
rency errors, in spite of a few irrelevant code points which get a
high rank.

Bug detection using labeled runs. In this method, the program-
mer runs the application multiple times and labels each execution
as buggy or non-buggy, depending on whether the bug manifested
itself or not. This process can be assisted by testing tools that at-
tempts to force bugs to happen [12, 14]. Once the runs are labeled,
we produce a set of bug-only graphs. A bug-only graph is computed
by taking a graph difference between the graph of each execution
labeled as buggy and the union of all graphs obtained from execu-
tions labeled as non-buggy. We then apply the same exact ranking
process used for the unlabeled method but over the set of bug-only
graphs. By defining and ranking code points of a set of bug-only
graphs, highly ranked code points are most likely related to the bug.
We demonstrate experimentally (Section 6.2) that this technique lo-
cates bugs precisely with a small number of executions.

Our labeling process assumes that the programmer classifies each
execution depending on the manifestation of only the specific bug
being investigated. This means that the programmer does not need
to know whether the whole execution of a program is correct, which
is hard. The programmer just needs to know whether the bug in
question manifested or not and classify accordingly. This reason-
able assumption makes labeling simple and accurate.

Post-deployment bug detection using BB-HW. BB-HW’s sup-
port for collecting context-aware communication graphs causes neg-
ligible performance degradation. Therefore we can use it in a de-
ployment scenario to continuously monitor an execution and detect
2A code point is a location in the source code, which can map to
multiple static instructions in the binary.

when an execution is likely to be buggy. When a deployed applica-
tion is running in the field, a spare core in our system periodically
collects graphs and processes them to detect whether it is likely that
the deployed application is experiencing a new bug.

We provide this functionality using a combination of the two de-
bugging methods just described. During testing, the developer col-
lects context-aware communication graphs for all test cases. The
resulting graphs are then unioned into the testing graph, which rep-
resents all executions observed during testing and can therefore be
considered correct. The testing graph is deployed together with the
application. For graphs collected periodically when the applica-
tion is running in the field, the system takes the difference from the
testing graph and applies the unlabeled method described earlier in
this section. For the code points with a rank above a configurable
threshold, the system sends the information back to the developer.

6. EVALUATION
This evaluation aims to: (1) demonstrate that our debugging

methods based on context-aware communication graphs detect bugs
accurately, leading to few unnecessary code inspections; (2) char-
acterize size and accuracy of our graphs; (3) characterize BB-SW;
and (4) characterize the overheads in BB-HW, justifying our design
choices.

6.1 Experimental Setup and Methodology
We evaluate BB-HW using a simulator based on Pin [11] and

SESC [16]. The simulator models a 16-node multiprocessor, with
32KB 8-way associative L1 Caches (cf., Intel Core), MESI cache
coherence protocol, our cache extensions, communication context
registers, tracking protocol, 16k-entry communication table and
software layer (traps).

We used three categories of workloads: full applications, bug
kernels, and synthetic buggy code. Table 1 shows the workloads
used. The full applications were chosen based on previous lit-
erature on bug detection [8, 10, 20]. To exercise buggy code in
Apache, we enabled buffered logging, and used a custom script
which launched 10 simultaneous requests for a static resource. For
our experiments with MySQL, we enabled binary logging, and used
the included sql-bench utility, modified to execute 50 instances
of the test-insert benchmark in parallel. For PBZip2, we decom-
pressed a bzip compressed text file containing a communication
graph from our tool. For AGet we fetched a software archive from
a remote server, and interrupted the download with the Unix inter-
rupt signal. In AGet and PBZip2, we added Unix usleep calls to
more frequently cause the bug to manifest itself. Our bug kernels
were extracted from Mozilla and MySQL. They are 300-600 line
extracts including buggy code from these applications. We used
bug kernels to capture the essence of bugs, and make in-depth ex-
perimental analysis less cumbersome. This methodology has been
used successfully in prior work in this area [9, 10, 20]. Finally,
we used several synthetic bug benchmarks. Several of these were
used in prior work on atomicity violation detection [9, 10], and we
added a synthetic ordering violation bug.

6.2 Efficacy
We applied the labeled and unlabeled debugging methods de-

scribed in Section 5. The output of those methods is a list of code
points ordered by our ranking criterion. We measure the quality of
the output by the number of non-buggy code points ranked higher
than the bug, i.e., the number of inspections required before the bug
is found. All results presented are averaged over 5 trials. For each
labeled trial, we collected 25 buggy runs, and 25 non-buggy runs.
For each unlabeled trial we used 25 runs, and ensured that at least

App. Class Name App. Version Bug Type Description

Synthetic

BankAcct n/a Atomicity Two threads try to update a bank account balance
Violation simultaneously, and an update is lost.

CircularList n/a Atomicity Many threads remove elements from head of queue and append them to tail of queue.
Violation Lack of atomicity of remove/append leads to incorrect append order.

LogAndSweep n/a Atomicity A log is written by many threads, and periodically flushed.
Violation Missing atomicity constraint leads to log corruption.

MultiOrder n/a Ordering Two threads’ repeated accesses to a shared variable
Violation must be interleaved. No code constraint enforces interleaving.

Bug Kernel

Moz-jsStr Mozilla-0.9 Multi-Var. To compute avg. string length, total number of strings and total string length
Atom. Vio. are tracked. Non-atomic updates can permit these to become inconsistent

Moz-jsInterp Mozilla-0.8 Multi-Var. Cache data structure is populated, and flag indicating cache occupancy is set. Lacking
Atom. Vio. atomicity constraints, interleaving read may read flag while it is inconsistent with cache.

Moz-macNetIO Mozilla-0.9 Multi-Var. Read of “valid” flag in conditional test and outcome of conditional
Atom. Vio. can be interleaved, and data invalidated.

Moz-TxtFrame Mozilla-0.9 Multi-Var. During update of buffer offset and buffer text length variables,
Atom. Vio. inconsistent values can be read by interleaving read.

MySQL-IdInit MySQL-4.1.8 Ordering Query of database node ID should be ordered with assignment of node ID
Violation but absent ordering constraints lead to incorrect ID in query reply.

Full App.

MySQL-BinLog MySQL-4.0.12 Atomicity Attempts to log data during log rotation do not properly handle
Violation log being closed, leading to unlogged database transactions.

Apache-LogSz Apache-2.0.48 Atomicity Concurrent updates to length of text in buffer can cause dropped
Violation update, leading to corruption of buffer. Can lead to crashes and log corruption.

PBZip2-Order PBZip2-0.9.1 Ordering Termination of worker thread loops is not ordered with deletion of
Violation pthread cond. var. data structure. Accesses to deleted cond. var. causes crash.

Aget-MultVar AGet-0.4 Multi-Var. Value of shared var. should be consistent with # bytes written to output file. Lacking
Atom. Vio. atomicity constraint permits read of inconsistent value of shared var. in signal handler.

Table 1: Bug workloads used to evaluate Bugaboo.

1 run was buggy. We justify the number of runs in Section 6.4.
Table 2 lists each bug, whether we were able to detect it with and
without context (Columns 2-3), and the number of code point and
function inspections required to find the bug, using labeled and un-
labeled methods in both BB-SW and BB-HW (Columns 4-9).

Overall, our results demonstrate that our technique accurately
pin-points concurrency errors, even in very large software pack-
ages. In our experiments with labeled graphs, bugs were located
with few inspections and in many cases, the bug was the first code
point reported. Using unlabeled graphs, we saw comparable re-
sults, with little (if any) increase in required inspections. We now
discuss the importance of context, the differences in accuracy be-
tween BB-SW and BB-HW and the effect of communication track-
ing granularity.

6.2.1 The Importance of Communication Context in
Detecting Concurrency Bugs

Column 2 (Detected without Ctx) and Column 3 (Detected with
Ctx) in Table 2 show that, with just one exception, the bugs eval-
uated can only be found with context information. The excep-
tion is an ordering violation bug: MySQL-IdInit. This bug can
be detected without context because there is a pair of instructions
that communicates only during buggy runs, irrespective of context.
For the other bugs, without context, there were no communication
edges in graphs from our experimental executions that occur only
during buggy executions, making it impossible to detect them using
differences of context-oblivious graphs.

Our dependence on context does not mean other techniques will
not find these bugs. For example, AVIO can detect some of the
atomicity violations that require context (e.g., BankAccount) be-
cause AVIO uses a heuristic specific to atomicity violations. We are
not aware, however, of another approach that is able to detect the
multivariable atomicity violations in Table 1.

6.2.2 Detecting Bugs With Labeled Communication
Graphs

Columns 4, 6 and 8 in Table 2 show the number of code point
inspections to find the bug using labeled graphs. Both BB-HW

and BB-SW are able to detect all bugs, requiring few unnecessary
inspections and, in some cases, none at all. The application re-
quiring the most inspections was MySQL-BinLog, with approxi-
mately 34 (in 24 different functions), which is a reasonable number
considering that the code consists of over one million lines. For
Apache-LogSz, which has over 220k lines of code, the largest
number of required inspections was 12 using BB-HW; using BB-
SW, this drops to just 8.8 on average. For Aget-MultVar, a
smaller application with less than 5k lines of code, there were never
any code points ranked higher than the bug.

Generally speaking, comparing BB-HW with BB-SW (line gran-
ularity) shows a small decrease in the number inspections required
for our full application workloads. The decrease is expected be-
cause graph collection in BB-HW is less precise, as it considers
only cache-to-cache transfers as communication, whereas BB-SW
considers all of memory. Comparing Columns 6 and 8 shows the
effect of line-level tracking compared to word-level, which doesn’t
have a significant effect on the number of inspections required.

6.2.3 Detecting Bugs With Unlabeled
Communication Graphs

Columns 5, 7 and 9 in Table 2 show the number of code point in-
spections required by our debugging method using unlabeled graphs.
The results show there are typically few inspections required. In
many cases (e.g., Apache-LogSz and Moz-jsStr) the num-
ber was larger than with the labeled method, which is intuitive,
since the unlabeled method relies on less information (no label-
ing information from the user). Other cases show the opposite re-
sult: PBZip2 and MySQL-BinLog actually got significantly bet-
ter. We found the disparity surprising. It turns out that the cause
is an artifact of our ranking function using relative frequency of
contexts: the graph difference used to produce the bug-only graph
in the labeled method made the context of the buggy code point
less relatively rare, and therefore lower ranked. This is a some-
what undesirable effect of our ranking function. A virtue of using
context-aware communication graphs, however, is that they can be
used with any ranking metric or learning technique, and are not
restricted to the technique proposed here.

Benchmark
Detected Detected # of Code Inspections To Find Bug
without with BB-HW BB-SW Line Granularity BB-SW Word Granularity
Context Context Labeled Unlabeled Labeled Unlabeled Labeled Unlabeled

BankAcct No Yes 1.4 (1.0) 2.2 (1.2) 4.0 (1.0) 3.6 (1.2) 3.6 (1.4) 4.8 (1.2)
CircularList No Yes 2.2 (1.2) 2.0 (1.6) 1.2 (1.0) 1.0 (1.0) 2.6 (1.2) 2.0 (1.0)
LogAndSweep No Yes 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 2.0 (1.0)
MultiOrder No Yes 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
Moz-jsStr No Yes 1.8 (1.0) 5.8 (3.2) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.4 (1.0)
Moz-jsInterp No Yes 1.0 (1.0) 1.4 (1.2) 2.6 (1.6) 3.8 (2.8) 1.8 (1.0) 2.8 (2.0)
Moz-macNetIO No Yes 1.4 (1.0) 2.8 (2.6) 5.0 (3.6) 2.4 (2.0) 3.0 (1.6) 4.8 (3.4)
Moz-TxtFrame No Yes 1.0 (1.0) 2.8 (2.4) 1.8 (1.4) 4.2 (2.4) 3.4 (1.0) 2.4 (2.2)
MySQL-IdInit Yes Yes 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)
MySQL-BinLog No Yes 34.0 (24.4) 19.2 (11.0) 28.4 (19.2) 19.6 (14.8) 34.2 (21.2) 16.0 (10.8)
Apache-LogSz No Yes 12.0 (10.6) 80.2 (49.8) 8.8 (7.2) 125.4 (60.8) 13.2 (10.8) 142.0 (61.4)
PBZip2-Order No Yes 14.5 (4.8) 5.2 (1.6) 10.8 (2.6) 1.4 (1.0) 6.6 (2.0) 3.4 (1.6)
AGet-MultVar No Yes 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 1.0 (1.0)

Table 2: Bug detection accuracy using Bugaboo. We report the number of code point inspections required
before the corresponding bug was found, the number in parenthesis show the number of distinct functions.
Note that one inspection indicates that zero irrelevant code points needed inspection, since the bug was
found on the first. Results are averaged over five trials.

6.2.4 Sources of Irrelevant Reports
There are two main reasons irrelevant code points are some-

times highly ranked. First, nondeterministic multithreaded execu-
tion may lead to potentially rare, but correct communication. If suf-
ficiently rare, or if only ever observed in buggy executions, these
may be ranked highly, in spite of being correct. Labeling graphs
largely mitigates this source of false positives. Second, because
buggy behavior tends to be infrequent, when buggy code executes,
the resultant communication context might also be infrequent with
respect to subsequent communicating instructions not involved in
bugs. This can lead to these instructions having a rare context and
appearing as bugs in our ranking. This can be mitigated by using
graphs from more runs.

6.3 Impact of Graph Collection Imprecision
As discussed in Section 4.2.2, we traded precision for lower

complexity in BB-HW. Compared to whole-memory communica-
tion tracking at word granularity, there are two sources of impreci-
sion in BB-HW: (1) communication tracking at a cache-line granu-
larity; and (2) considering only cache-to-cache transfers as commu-
nication. We quantify imprecision by computing the number of dis-
tinct communicating code points that were present in the graph col-
lected using whole-memory word-level (BB-SW word granularity)
but not present in graphs collected using the lossy collections, viz.,
whole-memory line-level (BB-SW line granularity) and cache-to-
cache line-level (BB-HW). Table 3 shows the results, which are
consistent across the board. Column 2 shows that imprecision added
by line tracking ranged from 17% to 27% and Column 3 shows
that imprecision added by cache-to-cache and line tracking is about
twice that.

App. % Imprecision Introduced
Line-Aliasing Aliasing + Evictions

AGet 16.67 33.33
Apache 25.57 59.09
MySQL 27.43 54.51
PBZip2 26.32 59.65

Table 3: Imprecision caused by line-level and cache-to-
cache-only tracking of inter-thread communication.

Section 6.2 showed that neither source of imprecision affects
Bugaboo’s ability to accurately detect bugs. There are two reasons
for that. First, we do not detect bugs based on absolute graph prop-

erties, but rather, by detecting graph anomalies — a property rel-
ative to the emergent communication invariants in a set of graphs.
These anomalies manifest themselves even in graphs collected us-
ing line addresses, because aberrant communication events (poten-
tial bugs) still render themselves as rare edges, just as they do at
word granularity. Second, cache evictions are not likely to have
a significant impact on bug detection capability. The reason is
that concurrency bugs typically manifest in tighter interleavings,
which leads to short-range communication. The communication
not captured due to cache evictions are ones which would have re-
sulted from communication over a long range of instructions —
long enough for data to be evicted from the cache — and are thus
unlikely to be of any use in debugging.

6.4 Effect of Context Size
Table 4 shows how Bugaboo’s bug detection ability varies with

the context size. Note that some bugs can not be found with context
lower than 4 (PBZip2-Order). For MySQL-BinLog, the num-
ber of inspections required to find the bug is high unless a longer
context is used. For most applications, as context grows, the num-
ber of irrelevant inspections goes down, which is expected since
more ordering information is available to distinguish memory ac-
cesses involved in bugs. We chose Bugaboo’s default context size
to be 5 because we wanted to favor better bug coverage and lower
unnecessary inspections even if at the cost of increasing graph size.

Benchmark None 1-Entry 2-Entry 3-Entry 4-Entry 5-Entry
BankAcct — 2.0 2.0 2.4 3.4 3.6

CircularList — — 7.2 3.4 3.2 2.6
LogAndSweep — — 2.2 2.8 1.6 1.0

MultiOrder — — 2.8 1.0 1.0 1.0
Moz-jsStr — 1.0 1.0 1.0 1.0 1.0

Moz-jsInterp — — — 1.6 1.8 1.8
Moz-macNetIO — 1.2 1.0 1.4 2.2 3.0
Moz-TxtFrame — — 3.4 2.8 2.8 3.4
MySQL-IdInit 1.0 1.0 1.0 1.0 1.0 1.0

MySQL-BinLog — — 522.6 128.8 60.0 34.2
Apache-LogSz — 25.2 6.4 7.2 9.8 13.2
PBZip2-Order — — — — 6.6 6.6
AGet-MultVar — 3.8 3.8 1.4 1.0 1.0

Table 4: Bug finding results for BB-SW (word) with differ-
ent context sizes. Dash (—) indicates the bug was not found
with the corresponding context size.

0 5 1
0

1
5

2
0

2
5

Additional Runs

0

20

40

60

80

100

%
 E

d
g
e
s
 A

d
d
e
d

5-entry Context
4-entry Context
3-entry Context
2-entry Context
1-entry Context
No Context

0 5 1
0

1
5

2
0

2
5

Additional Runs

0

20

40

60

80

100

%
 E

d
g
e
s
 A

d
d
e
d

0 5 1
0

1
5

2
0

2
5

Additional Runs

0

20

40

60

80

100

%
 E

d
g
e
s
 A

d
d
e
d

(a)
MySQL

(b)
Apache

(c)
PBZip2

Figure 7: Graph convergence with increasing number of runs for MySQL (a), Apache (b), and PBZip2 (c).

We now show that after few program runs, the number of new
communication events (edges) contributed by each additional run
decreases rapidly, i.e., we obtain a convergent communication graph
quickly. Figure 7 shows the number of new communication events
contributed by each program run as a fraction of the total graph size
after all prior runs. As expected, with longer contexts, more runs
are necessary to reach a convergent graph.

Convergence is demonstrated in the sharp drop-off in new com-
munication events, which reaches a flat bottom at around 10-15
runs. Our data shows that as the length of the context increases,
the time to converge increases as well. The increase occurs be-
cause as context gets longer, each instruction potentially maps to
a larger number of nodes. For a few runs, the fraction of edges
added is greater for smaller context sizes. This apparent inversion
is because graphs with longer contexts are larger, and the percent
increase in edges contributed by the run is lower for larger graphs.
These results show that the number of runs required to collect a
convergent graph is proportionate to the length of the context, and
that for any context size, very few runs are necessary. This justifies
the choice of 25 runs for our evaluation, since it is sufficient for
convergence.

6.5 Characterization
Our characterization has three goals: to understand the over-

heads in BB-HW; to assess the performance cost of BB-SW; and to
measure the typical size of context-aware communication graphs.
We did this characterization using the full applications from Table 1
as well as the PARSEC [1] benchmark suite, since synthetic bugs
and bug kernels are not suitable for this characterization.

6.5.1 Overheads of BB-HW
The main sources of overhead in BB-HW are writes to cache line

meta-data, writes to the CT, and traps to software when the CT is
full. Column 5 in Table 5 shows that the number of meta-data up-
dates is typically less than 200 per 10,000 memory operations, and
is as few as 3 in 1 million memory operations. Meta-data updates
only happen during cache misses (Columns 2, 3 and 4) and can
be fully overlapped, being completely off the critical path. They
therefore do not impose any performance cost. The number of CT
updates (Column 6) is predominantly less than 35 per 10,000 mem-
ory operations. CT updates are done simultaneously with cache co-
herence transactions and the operation to perform is a simple FIFO
buffer insertion, so it imposes negligible runtime overhead.

The most costly overhead is performing a software trap when the
CT is full. Column 7 shows that traps happen just a few times per
10 million memory instructions. These events are sufficiently infre-

quent that their cost is amortized over the course of an execution.
Moreover, it is possible to dedicate a spare core to read the com-
munication table, reducing the cost further. During trap handling,
writes to the CT are simply discarded. While this may result in a
small number of missed graph edges, it enables uninterrupted exe-
cution during trap handling, making it effectively a zero-overhead
operation.

Several applications stand out with higher costs: freqmine,
vips, MySQL-BinLog and x264. These applications have 10
to 20 times more edges in their communication graphs and much
higher cache miss rate (Columns 2, 3 and 4), indicating that they
have more widespread and frequent communication. This ulti-
mately leads to higher frequency traps to read out the communi-
cation table, but still, the frequency is only about 1 per million
memory operations.

6.5.2 Overheads of BB-SW
Column 8 shows the slowdown caused by BB-SW compared to

the application running natively, without any instrumentation (not
under Pin). As expected, BB-SW causes significant performance
degradation, since it has to monitor and take an action at every
memory operation. The cost of the action varies depending on how
frequently inter-thread communication occurs in the application.
For some applications, such as Apache-LogSz and AGet, we
saw tolerable slowdown of about 15x. For some applications (e.g.,
Vips), the cost was significantly higher, reaching three orders of
magnitude in some cases. This is on par with popular dynamic
analysis tools such as Valgrind [13]. Our focus in this work was
not optimizing our software tool and we see direct ways of reducing
overheads, e.g, by using more concurrent data structures.

6.5.3 Graph Sizes
Columns 9-12 show the size of communication graphs both with

and without context. The size of graphs is a function of how wide-
spread communication is within the application’s code. The first
noticeable trend is that context-aware communication graphs (Col-
umns 11 and 12) are significantly larger than context-free commu-
nication graphs (Columns 9 and 10). This is expected, since in-
structions can execute in multiple contexts. For none of the ap-
plications did these graphs exceed 100k nodes and 200k edges in
size. Using an un-optimized, sparse adjacency matrix representa-
tion, context-aware graphs never exceed 1 MB in size. The low
storage overhead supports the feasibility of using BB-HW post-
deployment, since doing so requires shipping the union of all graphs
obtained during testing. Also, since graphs are small, differences
obtained in the field can be transmitted back to the developer.

Benchmark
BB-HW BB-SW Graph Sizes

Rd. Ms. / Wr. Ms. / Coh. Ms. / M-D Wr / CT Wr. / Traps / Slow- w/o Context w/ Context
10k MOp 10k MOp 10k MOp 10k MOp 10k MOp 10M MOp down(x) # Nodes # Edges # Nodes # Edges

blackscholes 212.41 53.93 0.02 266.36 212.55 11.3 128 51 104 230 472
canneal 429.33 15.23 0.00 444.57 429.33 6.2 80 216 437 2025 4055
dedup 5.00 0.49 0.05 5.53 5.09 0.1 451 227 750 3784 11570
ferret 33.70 23.96 0.08 57.74 33.78 0.0 26 398 821 572 1216

fluidanimate 27.15 8.38 0.25 35.78 27.69 1.6 4623 284 831 15692 38570
freqmine 137.59 37.90 0.01 175.50 137.68 8.0 3845 1050 2228 41455 85142
swaptions 23.53 98.60 0.51 122.65 25.09 1.5 2151 168 676 5103 15633

vips 254.72 67.42 0.05 322.19 254.81 15.5 5025 1326 2942 56016 115178
x264 75.22 28.09 0.00 103.30 75.22 4.4 1260 2347 4799 68067 137071

AGet-MultVar 10.50 0.25 8.39 19.14 18.91 0.0 15 58 135 154 376
PBZip2-Order 0.02 0.00 0.00 0.03 0.02 0.0 19 59 145 208 451
Apache-LogSz 3.27 3.78 0.03 7.08 3.31 0.0 13 672 1361 1797 3635

MySQL-BinLog 129.15 32.85 0.18 162.18 129.41 6.3 166 1303 3271 20435 48861

Table 5: Characterization of BB-HW, BB-SW and communication graphs sizes.

6.6 Case Study: Configuration Error in dedup

After Bugaboo’s development and initial evaluation, we decided
to run it with a few PARSEC applications. We reconfigured the
hashtable data structure used in dedup benchmark so that it was
built with a configuration documented as unsafe for multithreaded
execution — we enabled dynamic hash resizing. We then used
BB-SW to collect graphs from 50 program runs, using the buggy
configuration. We processed the collected graphs using our unla-
beled processing technique. After examining just 6 code points,
we discovered an atomicity violation which occurs when the buggy
configuration is used, as well as a developer comment describing
that the code was not safe if threading is enabled. While this was
a documented configuration error, and not a new bug, we consider
the ease with which we found the involved code a further validation
of the effectiveness of our technique.

7. RELATED WORK
Debugging based on anomalous behavior has been explored ex-

tensively in the literature, including both static [2] and dynamic
approaches [3, 6]. Liblit [7] has explored using statistical tech-
niques for invariant-based bug detection in which he leverages ex-
ecution diversity from deployed software. This prior work inspired
us in thinking about using invariant-based techniques for concur-
rency bug detection.

AVIO [9] is an atomicity violation detection system that uses an
invariant-based approach. AVIO uses a set of training runs to infer
when memory accesses should not be interleaved; it then moni-
tors dynamically when these invariants are violated. It proposes ar-
chitecture extensions to decrease the performance cost of dynamic
monitoring. AVIO is tailored to single-variable bugs only.

Interleaving-Constrained Shared-Memory MultiProcessor [20],
which was concurrently developed with our work, is a bug avoid-
ance technique based on building invariants during testing and then
using architecture support that enforces these invariants at run-time.
The invariants are encoded in sets of happens-before relationships
between static memory instructions (called PSets), which is in ef-
fect a basic context-oblivious communication graph. Since PSets
do not include any form of context, it fundamentally misses bugs
that need context to be detected (e.g., multivariable ones), so our
context-aware communication graphs enable detection of a super-
set of bugs that would lead to a PSet violation. Note that since
PSets aims at bug avoidance, it needs more complex system and
architecture support that can validate whether each memory access
can proceed or not. Both AVIO and PSets only use labeled runs, so
they are not fully automatic. Our unlabeled method, on the other
hand, is fully automatic.

Other notable examples of architecture support for concurrency
bug detection are HARD [21], which provides support for lock-
ing discipline violation [18] detection; Atom-Aid [10], which uses
hardware signatures to detect atomicity violations; and ReEnact,
which detects data races by leveraging speculative execution. The
key differences of our proposed architecture extensions compared
to previous proposals is: (1) we focus on a generic mechanism
to build communication graphs; (2) we track global communica-
tion context; and (3) our mechanism is only activated during cache
misses, so it incurs very low overhead.

Finally, DMTracker [5] also proposed to track communication in
message-passing applications and use machine learning to detect
potential bugs. DMTracker applies to a fundamentally different
category of applications and types of bugs, but could potentially
use our notion of context to increase their coverage and improve
their results.

8. CONCLUSIONS
The approach to bug detection that we take in this paper is to col-

lect communication graphs from multiple executions and identify
graph anomalies that are likely the result of concurrency bugs. The
main advantage of this approach over most prior work is that it is
general. The key to graph-based bug detection is whether enough
information is encoded in the graph.

In this paper we made the observation that basic context-oblivious
graphs do not encode enough information to enable detection of
many bugs. We addressed this issue by proposing context-aware
communication graphs, a new type of graph that embeds access or-
dering information using communication contexts, which are easily
obtained by monitoring inter-thread communication. Using these
graphs, we developed Bugaboo, a comprehensive framework for
concurrency bug detection that is able to accurately detect complex
concurrency bugs (e.g., multivariable) with few irrelevant code in-
spections.

We describe two implementations of Bugaboo. One in software
and one that uses hardware support to decrease the overhead of
graph collection. The hardware support we propose is a set of
modest architecture extensions to off-the-shelf multicore proces-
sors that efficiently keeps track of inter-thread communication and
context. We leverage the fact that the architecture extensions do not
lead to performance degradations and propose post-deployment use
as well.

Acknowledgments
We thank the anonymous reviewers for their helpful feedback. We
thank Dan Grossman, Karin Strauss, Joseph Devietti, Tom Bergan,

Owen Anderson and Benjamin Wood for their invaluable feedback
on the manuscript and insightful discussions. This work was sup-
ported in part by NSF under grants CNS-0720593 and CCF-0930512,
and gifts from Intel, Microsoft and Google.

9. REFERENCES
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

Benchmark Suite: Characterization and Architectural
Implications. In PACT, 2008.

[2] D. Engler, D. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs
as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code. In SOSP, 2001.

[3] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin.
Quickly Detecting Relevant Program Invariants. In ICSE,
2000.

[4] C. Flanagan and S. Qadeer. A Type and Effect System for
Atomicity. In PLDI, 2003.

[5] Q. Gao, F. Qin, and D. K. Panda. DMTracker: Finding Bugs
in Large-Scale Parallel Programs by Detecting Anomaly in
Data Movements. In SC, 2009.

[6] S. Hangal and M. S. Lam. Tracking Down Software Bugs
Using Automatic Anomaly Detection. In ICSE, 2002.

[7] B. R. Liblit. Cooperative Bug Isolation. PhD thesis,
University of California, Berkeley, 2004.

[8] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes
- A Comprehensive Study on Real World Concurrency Bug
Characteristics. In ASPLOS, 2008.

[9] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting
Atomicity Violations via Access Interleaving Invariants. In
ASPLOS, 2006.

[10] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid:
Detecting and Surviving Atomicity Violations. In ISCA,

2008.
[11] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,

G. Lowney, S. Wallace, V. Janapa Reddi, and K. Hazelwood.
PIN: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In PLDI, 2005.

[12] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. Nainar, and
I. Neamtiu. Finding and Reproducing Heisenbugs in
Concurrent Programs. In OSDI, 2008.

[13] N. Nethercote and J. Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In PLDI,
2007.

[14] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places. In ASPLOS, 2009.

[15] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level
Speculation Mechanisms to Debug Data Races in
Multithreaded Codes. In ISCA, 2003.

[16] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic,
L. Ceze, S. Sarangi, P. Sack, K. Strauss, and P. Montesinos.
SESC Simulator, January 2005. http://sesc.sourceforge.net.

[17] M. Ronsee and K. De Bosschere. RecPlay: A Fully
Integrated Practical Record/Replay System. ToCS, 1999.

[18] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A Dynamic Data Race Detector for
Multi-Threaded Programs. ToCS, 1997.

[19] M. Xu, R. Bodík, and M. D. Hill. A Serializability Violation
Detector for Shared-Memory Server Programs. In PLDI,
June 2005.

[20] J. Yu and S. Narayanasamy. A Case for an Interleaving
Constrained Shared-Memory Multi-Processor. In ISCA,
2009.

[21] P. Zhou, R. Teodorescu, and Y. Zhou. HARD:
Hardware-Assisted Lockset-based Race Detection. In HPCA,
2007.

