
An Energy-interference-free Hardware-Software
Debugger for Intermittent Energy-harvesting Systems

Alexei Colin1,2, Graham Harvey1,2, Brandon Lucia2, and Alanson P. Sample1

Disney Research, Pittsburgh1 Electrical and Computer Engineering2

Pittsburgh, USA Carnegie Mellon University
graham.n.harvey@disney.com Pittsburgh, USA

alanson.sample@disneyresearch.com {acolin, blucia}@andrew.cmu.edu

Abstract
Energy-autonomous computing devices have the potential
to extend the reach of computing to a scale beyond either
wired or battery-powered systems. However, these devices
pose a unique set of challenges to application developers
who lack both hardware and software support tools. Energy
harvesting devices experience power intermittence which
causes the system to reset and power-cycle unpredictably,
tens to hundreds of times per second. This can result in
code execution errors that are not possible in continuously-
powered systems and cannot be diagnosed with conventional
debugging tools such as JTAG and/or oscilloscopes.

We propose the Energy-interference-free Debugger, a
hardware and software platform for monitoring and de-
bugging intermittent systems without adversely effecting
their energy state. The Energy-interference-free Debugger
re-creates a familiar debugging environment for intermit-
tent software and augments it with debugging primitives
for effective diagnosis of intermittence bugs. Our evalua-
tion of the Energy-interference-free Debugger quantifies its
energy-interference-freedom and shows its value in a set of
debugging tasks in complex test programs and several real
applications, including RFID code and a machine-learning-
based activity recognition system.

1. Introduction
Energy-harvesting devices are embedded computing sys-
tems that eschew tethered power and batteries by harvest-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org or Publications Dept., ACM,
Inc., fax +1 (212) 869-0481.
ASPLOS ’16, April 02-06, 2016, Atlanta, GA, USA
c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2872362.2872409

Figure 1: EDB, energy-interference-free system for monitoring
and debugging energy-harvesting devices, attached to a WISP [25]
(purple PCB) in Panel A and shown in detail in Panel B.

ing energy from the environment [6, 12, 13, 16, 21, 25]. A
power system collects energy into a storage element (i.e.,
a capacitor) until the buffered energy is sufficient to power
the computing device. Once powered, the device can operate
until energy is depleted and power fails. After the failure, the
cycle of charging begins again. These charge-discharge cy-
cles power the system intermittently and, consequently, soft-
ware that runs on an energy-harvesting device also executes
intermittently [18, 23]. A power failure may interrupt an ex-
ecution with a reboot at any point. A reboot clears volatile
state (e.g., register file, SRAM), retains non-volatile state
(e.g., FRAM), and transfers control to some earlier point in
the program (e.g., the start of main()). Recent work [18]
defined and characterized the intermittent execution model,
comprising periods of execution interspersed with reboots.

Intermittence makes software difficult to write and un-
derstand. A reboot can happen at any point in a program’s
code, and may occur tens or hundreds of times per second.
Reboots complicate a program’s possible behavior because
reboots are implicit discontinuities in the program’s control
flow that are not expressed anywhere in the code [18, 23].
Even with checkpointing [11, 20, 24] and versioning [18],

reboots cause control to flow unintuitively back to a previ-
ous point in the execution.

Intermittence can cause correct software to misbehave.
Intermittence-induced jumps back to a prior point in an ex-
ecution inhibit forward progress and may repeatedly exe-
cute code that should not be repeated. Intermittence can
also leave memory in an inconsistent state that is impos-
sible in a continuously powered execution [18, 23]. These
failure modes represent a new class of intermittence bugs.
To avoid intermittence-related malfunction, code must cor-
rectly leverage non-volatile memory. Writing intermittence-
safe code for an energy-harvesting application or runtime
system [2, 4, 11, 18, 20, 24] requires the programmer to un-
derstand, find, and fix intermittence bugs.

To diagnose intermittence bugs in their code, program-
mers need to monitor system behavior, observe failures, and
examine internal program state. Unfortunately, this simple
debugging methodology is unusable for intermittence bugs
because existing tools power the target device, masking in-
termittent behavior. Programmers are left with an unsatisfy-
ing dilemma: to use a debugger to monitor the system and
never observe a failure; Or to run without a debugger and
observe the failure but gain no insight into the system neces-
sary for understanding the bug.

Our work addresses the lack of basic debugging support
for intermittent systems with the Energy-interference-free
Debugger (EDB), a complement of hardware and software
for energy-interference-free monitoring and manipulation of
intermittent devices, pictured in Figure 1. EDB can passively
monitor a target device for its energy level, I/O events (e.g.,
I2C, RFID), and program events. Monitoring with EDB,
unlike with conventional debuggers, is energy-interference-
free, because it is designed to be electrically isolated from
the target device. EDB also provides a capability to actively
manipulate the amount of energy stored on the device. Using
this mechanism, EDB can compensate for the energy con-
sumed by arbitrarily expensive tasks, effectively eliminating
their impact on the energy state experienced by the program.

Many important intermittence debugging tasks are im-
possible without energy-interference-free monitoring and
manipulation mechanisms. Passive monitoring allows con-
current tracing of energy, program events, and I/O under
realistic scenarios. EDB’s energy manipulation and compen-
sation mechanism lets a programmer instrument application
code with energy-hungry invariant checks (e.g., asserts)
and trace statements (e.g., printfs) without impacting ap-
plication behavior. The same mechanisms enable interactive
debugging with breakpoints that can be conditioned on en-
ergy level and with access to the state of the target device.

To summarize our main contributions:

• We observe that energy-interference-freedom is essential
for debugging intermittent, energy-harvesting systems.

• We design and build EDB, a platform for energy-interfer-
ence-free system monitoring and manipulation.

Energy
Harvester Load

(Application)

Energy Source Energy Harvesting Device A

H
a

rv
es

te
d

 V
o

lt
ag

e

Time

Threshold for
Operation

B
ro

w
n

 O
u

t

C
h

ec
k

P
o

in
t

W
ild

 P
o

in
te

r

B
ro

w
n

 O
u

t

B
ro

w
n

 O
u

t

B

Figure 2: A simplified circuit diagram of an energy harvesting
device (Panel A) and characteristic charge and discharge cycles
which define its intermittent operation (Panel B).

• We develop debugging primitives for intermittent soft-
ware, including energy-aware breakpoints, keep-alive as-
sertions, and energy guards.

• We evaluate EDB and show that it is energy-interference-
free and is instrumental in intermittence debugging.

2. Intermittence and Energy-interference
This section provides background on the challenges pre-
sented by intermittent energy-harvesting devices and illus-
trates that existing approaches to debugging fail to address
these challenges. As a basis for our discussion, we assume
an intermittent system that executes a C program that takes
longer than a single charge-discharge execution cycle to
complete. We assume our device has a mixture of volatile
registers and memory, as well as some non-volatile memory.
We further assume a checkpointing mechanism that periodi-
cally collects a checkpoint of volatile execution context (i.e.,
register file and stack) like prior work [11, 20, 24]. Note that
this checkpointing assumption simplifies the exposition, but
our ideas and prototype apply to a system without that sup-
port.

2.1 Challenges of Intermittence
Power intermittence complicates understanding and debug-
ging a system, because the behavior of an intermittent sys-
tem is closely linked to its power supply. This link is illus-
trated in Figure 2. A simplified energy-harvesting circuit di-
agram is shown in Figure 2A. An ambient energy transducer
(e.g., solar, RF, vibration) connects to an energy storage el-
ement (a capacitor), and a load (a microcontroller). Unlike
a battery, the ambient energy source has a high source resis-
tance that limits its usable power, resulting in the character-
istic “sawtooth” RC charging behavior shown in Figure 2B.
The system charges its capacitor until there is enough energy
and voltage to operate. Then, active operation begins and the

while(true){[true]

select(e)

remove(list,e)
 e->prev->next=e->next
 if(e==list->tail)[false]
 e->next->prev=e->prev

update(e)

append(list,e)
 e->next=NULL
 e->prev=list->tail
 list->tail->next=e

select(e)

remove(list,e)
 e->prev->next=e->next
 if(e==list->tail)[false]
 e->next->prev=e->prev

Ti
m

e

Continuous
Execution

Checkpoint

Source
__NV list_t list
main(){
 init_list(list)
 while(true){
 __NV elem e
 select(e)
 remove(list,e)
 update(e)
 append(list,e)
 }
}

append(list,e){
 e->next = NULL
 e->prev = list->tail
 list->tail->next = e
 list->tail = e
}

remove(list,e){
 e->prev->next =
 e->next
 if(e==list->tail){
 tail = e->prev
 }else{
 e->next->prev =
 e->prev
 }
}

while(true){[true]

select(e)

remove(list,e)
 e->prev->next=e->next
 if(e==list->tail)[false]
 e->next->prev=e->prev

update(e)

append(list,e)
 e->next=NULL
 e->prev=list->tail
 list->tail->next=e
 list->tail=e

Reboot! Back to checkpoint

Bug! Writing a wild pointer

Intermittent
Execution

Power fails before
list->tail=e

Should be true, but
append rebooted

because e->next = NULL

Ti
m

e
Always executes
completely w/
continuous power

Figure 3: An intermittence bug. The linked-list stays correct with
continuous power but is corrupted and leads to a wild pointer write
with intermittent power.

capacitor starts to discharge (regions highlighted in green).
The device continues actively until the voltage on the stor-
age capacitor drops below a minimum operating threshold
(dashed red line), at which point the system loses power and
begins another charging cycle. This repeated charging and
discharging of the device forces software into an intermit-
tent execution model [18] where periods of powered execu-
tion are interspersed with reboots.

Figure 3 illustrates how intermittence induces bugs even
with runtime support for checkpointing volatile state into
non-volatile memory [11, 20, 24]. The code manipulates
a linked-list in non-volatile memory using append and
remove functions. A continuous execution completes the
code sequentially, as expected. An intermittent execution,
however, is not sequential. In the leftmost trace, a checkpoint
happens to be collected at the top of the while loop and the
processing continues until power fails at the indicated point
(cf. Figure 2). After the reboot, execution resumes from the
checkpoint. This sequence of events later leads to undefined
behavior. The execution violates the pre-condition assumed
by remove that only the tail’s next should be NULL. The
reboot interrupts append before it can make node e the list’s
new tail but after its next pointer is set to NULL. When ex-
ecution resumes at the checkpoint, it attempts to remove
node e again. The conditional in remove confirms that e
is not the tail, then dereferences its next pointer (which is
NULL). The NULL next pointer makes e->next->prev a
wild pointer that, when written, leads to undefined behavior.
This NULL pointer dereference cannot happen in a continu-
ous execution and is an example of an intermittence bug.

2.2 Energy-interference during Debugging
Debugging intermittence bugs, like the one in Figure 3, us-
ing existing tools is virtually impossible. Conventional de-
buggers supply power to the device-under-test (DUT), which
precludes observation of a realistically intermittent execu-

tion. Dedicated debugging equipment, like a JTAG [1] de-
bugger, offers visibility into the device’s state but is not use-
ful because it provides continuous power and masks inter-
mittence. JTAG power isolator devices [27] exist to decou-
ple debug host power rails from DUT power rails, but these
do not help with intermittence debugging, because the JTAG
protocol fails if the DUT powers off. The inapplicability of
JTAG precludes interactive debugging (e.g., like GDB or
LLDB) for intermittent executions. Using a JTAG debug-
ger for the code in Figure 3 would only ever result in the
non-failing, continuous execution shown in the middle; the
programmer would never see unexpected behavior.

One mostly energy-interference-free tool that can be used
for debugging intermittent systems to a limited extent is a
mixed-signal oscilloscope. A scope can collect an energy
trace by probing DUT’s power system and I/O lines. Unfor-
tunately, a scope provides no insight into the internal state of
the software running on the DUT. Scope-based debugging
is not the interactive process familiar to most programmers.
Moreover, oscilloscopes cost thousands of dollars, making
them inaccessible to most developers. Using a scope to de-
bug the code in Figure 3 would permit the problematic inter-
mittent execution. However, the scope would not help relate
changes in the device’s energy state (which it can observe)
to the software events that change device state and memory
(which it cannot observe). That absent connective informa-
tion is the key to understanding the failure in this code.

An alternative approach to diagnosing an intermittence
bug is to directly write debugging instrumentation code into
an application to trace certain program events. In embed-
ded systems, a popular ad hoc approach is to toggle an LED
at a point of interest. LED-based tracing does not work in
energy-harvesting devices, because LEDs are power-hungry
and their energy use changes the execution’s behavior. As a
case in point, it is prohibitively expensive to use an LED to
indicate when a WISP energy-harvesting device [25] is exe-
cuting code, rather than just charging. Powering an LED in-
creases the WISP’s current draw by five times, from around
1mA to over 5mA.

Another tracing strategy is to manually instrument code
to log program events to non-volatile memory. The result-
ing trace lacks information about the energy level, unless
the developer also spends time, energy, and an ADC chan-
nel to log the DUT’s energy state. Non-volatile tracing also
consumes precious non-volatile storage space. To spare con-
suming non-volatile storage space, a programmer may write
code to stream the event log to a separate, always-on system
(e.g., via UART). Powering and clocking an I/O peripheral
to transfer the log is expensive in time and energy and adds
considerable complexity to code.

All of these instrumentation-based approaches change the
point in the program at which energy is exhausted. As a re-
sult, the act of debugging alters the intermittent behavior of
the application. Furthermore, the value of tracing depends

on the events which the programmer decides to trace. To un-
derstand the intermittence bug in Figure 3, the programmer
needs to log particular events in the append and remove rou-
tines. The bug manifests as a wild pointer write and may ap-
pear to crash inexplicably, in code far from the either of those
routines, giving little to suggest that append and remove

contain the culpable code.
Energy-interference and lack of visibility into intermittent

executions makes prior approaches to debugging inadequate
for intermittence debugging.

3. EDB: Energy-interference-free Debugging
EDB is an energy-interference-free platform for intermit-
tence debugging that addresses the shortcomings of existing
approaches described in Section 2. This section describes
the high-level capabilities and functionality of EDB, while
Section 4 describes the co-designed hardware and software
implementation that make EDB energy-interference-free.

Figure 4 illustrates EDB functionally. At the top are
EDB’s capabilities that together support the debugging
primitives at the bottom. The functionality is organized into
two parts. The first part is support for passively monitor-
ing a device’s energy level, program events and I/O, which
we call EDB’s “passive mode” of operation. The second
part is a complementary “active mode” with support for
actively monitoring and manipulating the target’s energy
level and internal state (e.g., registers and memory). We
combine passive and active mode capabilities, to implement
energy-interference-free debugging primitives, including en-
ergy and event tracing, intermittence-aware breakpoints, en-
ergy guards for instrumentation, and interactive debugging.

3.1 Passive Mode Operation
EDB’s passive mode operation is built around the three right-
most components at the top of Figure 4. The developer gets
the ability to acquire a set of streams and relay them to the
host workstation continuously in real-time without active in-
volvement from the target whether it is on or off. Streams in-
strumental for debugging are the energy level, I/O events on
wired buses, messages exchanged over RFID protocol, and
program events marked by watchpoints in application code.
A key advantage of EDB is the ability to gather this data
concurrently, letting the developer correlate changes in sys-
tem behavior with changes in energy state. That correlation
is important during development, but, as Section 2 describes,
difficult or impossible using existing techniques.

3.2 Active Mode Operation
The capability to manipulate the amount of energy stored on
the target device underlies EDB’s active mode of operation.
Active mode frees debugging tasks from the constraint of the
small energy store of the target device. EDB can compensate
for the energy consumed by a debugging task that involves
a costly operation on the target, such as interacting with the

Measure
Energy Level

}

 for(…){
 sense(&s)
 ok=check(s)
 if(ok){
 i++
 data[i]=s

Trace Program
Events

Trace I/O
Events

}}
Energy Logging Event Logging I/O Logging

Code BreakpointsEnergy Breakpoints

Manipulate
Energy Level

Assertions
Energy Guards/
Instrumentation

Interactive
DebuggingD

eb
ug

gi
ng

Pr
im

iti
ve

s

Code/Energy Breakpoints

C
ap

ab
ili

tie
s

Active Mode Passive Mode

Figure 4: EDB’s features and supported debugging tasks.

programmer, executing arbitrary debug code, or conveying
state to the debugger. Before performing an active task the
energy on the target device is measured and recorded. While
the active task executes, the target is continuously powered.
After performing the active task, energy on the target device
is restored to the level measured before the active task. Con-
tinuously powering active tasks enables them to consume ar-
bitrary amounts of energy. Energy compensation provides
the illusion of an unaltered, intermittent execution to the ap-
plication. Without this support, debugging tasks that require
considerable involvement from the target are out of reach.

3.3 Energy-interference-free Debugging Primitives
Using the monitoring and manipulation capabilities de-
scribed so far, EDB creates a toolbox of energy-interfer-
ence-free debugging primitives. EDB brings to intermit-
tent platforms familiar debugging techniques that are cur-
rently confined to continuously-powered platforms. New
intermittence-aware primitives are introduced to handle de-
bugging tasks that arise only on intermittently-powered plat-
forms.

3.3.1 Code and Energy Breakpoints
EDB implements three types of breakpoints. A code break-
point is a conventional breakpoint that triggers at a certain
code point. An energy breakpoint triggers when the target’s
energy level is at or below a specified threshold. A combined
breakpoint triggers when a certain code point executes and
the target device’s energy level is at or below a specified
threshold. Breakpoints conditioned on energy level can help
catch energy leaks due to unexpected code paths. They initi-
ate an interactive debugging session precisely in problematic
iterations when more energy was consumed than expected or
when the device is about to brown-out.

3.3.2 Keep-alive Assertions
EDB provides support for using familiar assertions on in-
termittent platforms. When an assertion fails, EDB immedi-
ately tethers the target to a continuous power supply to pre-
vent it from losing state by browning out. This keep-alive
feature turns what would have to be a post-mortem recon-
struction of events into an investigation on a live device. A

post-mortem analysis is limited to scarce clues in a tiny ad
hoc “core dump” that a custom fault handler can manage to
save into non-volatile state before the target runs out of en-
ergy and resets. The clues available in the interactive session
that is automatically opened by EDB for a failing assert

include the entire live target address space and I/O buses to
peripherals.

3.3.3 Energy Guards
EDB can hide the energy cost of an arbitrary region of code
if enclosed between a pair of energy guards. Code within en-
ergy guards executes on tethered power. Code on either side
of an energy-guarded region experiences an illusion of conti-
nuity in the energy level across the energy-guarded region as
if no energy was consumed. EDB implements energy guards
using its energy compensation mechanism by recording the
target energy level upon entering an energy guard and restor-
ing it upon exiting the guard. Without energy cost, instru-
mentation code becomes non-disruptive and therefore useful
on intermittent platforms. Two especially valuable forms of
instrumentation impossible without EDB are complex data
structure invariant checks and external event tracing. Ex-
tra code added to an application to check invariants on data
structures or report when certain events have executed via
I/O (e.g. printf, LED) can be costly enough to repeat-
edly deplete the target energy supply and prevent forward
progress.

Besides instrumentation, EDB energy guards may also
help incorporate non-intermittence-safe third-party code into
intermittent applications. As long as third-party library calls
are wrapped in energy guards, intermittence failures are
guaranteed to not occur within the library. Functionality can
now be developed separately from handling intermittence.
Similarly, energy guards are useful for gradually porting
code from a continuously powered platform. A programmer
can start with an energy guard around the entire program and
repeatedly exclude a module from the guarded region after
verifying its correctness under intermittence, until the entire
application is out of the guarded region and intermittence-
safe.

3.3.4 Interactive Debugging
EDB supports interactive debugging of a target from a work-
station. An interactive session provides full access to view
and modify the target’s memory, as in a conventional debug-
ger (e.g., GDB, LLDB). A developer can enable code-energy
breakpoints and can manually manipulate the target’s energy
level. An interactive session is entered automatically when
a breakpoint is hit or an assertion fails or on demand by a
console command. A unique benefit of EDB is its ability to
trigger a manipulation of the target’s energy state based on
the target’s program behavior and vice versa.

Power
Harvesting Regulator

Demodulator

Modulator

Sensors and
Peripherals

MCU

MCU

Digital
Level Shifters

USB
Controller

Charge /
Discharge

Circuit

V
re

g

In
te

rr
u

p
t

C
od

e
M

ar
ke

r

I2
C

R
F

D
at

a
-

T
X

R
F

D
at

a
-

R
X

Ta
rg

et

ED
B U

SB
 t

o
 h

os
t

V
ca

p

Analog
Buffers

Figure 5: Block diagram of EDB connected to an RF energy-
harvesting target. All signal lines are buffered to minimize energy
interference. A charge/discharge circuit controls the voltage on the
target’s energy storage capacitor.

4. Hardware/Software Implementation
EDB’s capabilities and debugging primitives are imple-
mented in custom co-designed hardware and software. Fig-
ure 5 shows a block diagram of EDB (depicted in green)
connected to an RF energy harvesting target (in purple).
The labeled wires are physical connections between EDB
and the target that carry both analog and digital signals and
are exposed through header pins. Our prototype hardware
board can connect to any energy-harvesting device with a
microcontroller and a capacitor. To support a new device,
the applicable physical connections from Figure 5 must be
wired and target-side EDB software library of 1200 lines of
C code must be ported to the new architecture.

4.1 Energy Level Monitoring
Energy-interference-free measurement of the target’s energy
level is essential to EDB’s passive mode operation (Sec-
tion 3.1). To measure a device’s energy level, EDB uses two
physical connections, Vcap and Vreg, to the target device’s
energy storage capacitor and its regulated power line, respec-
tively. These signals pass through a dual high impedance,
unity gain instrumentation amplifier to minimize leakage
current from the target to EDB. These analog voltages are
digitized by an analog to digital converter (ADC) and logged
or used internally for debugging tasks. While it is possible
for energy harvesting devices to measure their stored energy
levels, doing so uses energy, perturbing the energy state be-
ing measured and altering software’s intermittent behavior.

4.1.1 Energy Manipulation and Compensation
Energy manipulation and compensation are the basis for
EDB’s active mode of operation (Section 3.2). EDB has a
custom circuit consisting of a low pass filter, keeper diode,
and GPIO pins that can charge and discharge the target’s

energy storage capacitor. This circuit is designed to prevent
it from loading down or trickle charging the target while
inactive (i.e., in a high impedance state).

To charge the target to a desired voltage level, EDB ac-
tivates a GPIO pin to raise the voltage on the energy stor-
age capacitor. A basic iterative control loop in EDB’s soft-
ware ensures that the voltage converges to the desired level.
Discharging works similarly: the target’s energy storage ca-
pacitor discharges through a fixed resistive load and a soft-
ware control loop ensures convergence to the desired level.
In our prototype, the charging circuit assumes a capacitive
storage element, but with software changes, the same design
can support other storage media, such as thin-film batteries.

4.1.2 I/O Monitoring
EDB is designed to enable passive monitoring of arbitrary
I/O and attached peripherals, such as sensors, communica-
tion buses, and radios. These digital signals (labeled RF Data
Tx/Rx, UART, and I2C in Figure 5) connect to a digital
buffer and level shifter. We use an extremely low-leakage
buffer to prevent leakage current from the target to EDB, and
we use the level shifter to match the buffer’s voltage level to
the target device’s voltage level.

Note that while the target device has an on-board reg-
ulator, the Vreg line may drop below its specified, regulated
value during a power failure on the target device. We address
the Vreg drop with a simple tracking circuit consisting of an
analog buffer to keep the level shifter at the target’s voltage.
This circuit is important because too large a mismatch (i.e.,
over +/-0.3V [30]) activates the voltage protection diodes in
the target’s MCU, which perturbs the target’s power state.

Our prototype can monitor GPIO, UART, I2C, and RFID
RX/TX data lines. A key benefit of EDB is that it monitors
data communication lines externally. With external monitor-
ing, messages (e.g., RFID messages) can be decoded even if
the target does not correctly decode them due to power fail-
ures. EDB’s I/O monitoring support aids developers in I/O
calibration and debugging I/O related issues in software.

4.1.3 Program Event Monitoring
EDB can track program execution using the Code Marker
connections in Figure 5. To monitor a code point, the pro-
grammer inserts a watchpoint with a unique identifier at that
location. EDB’s target-side software encodes this identifier
onto the Code Marker lines when the program counter passes
over the code point. On the debugger-side, transitions on the
Code Marker lines are captured and decoded into watchpoint
identifiers. EDB can simultaneously monitor 2n− 1 distinct
watchpoints, where n is the number of GPIO lines allocated
to the Code Marker function.

Monitoring program events using EDB is practically
energy-interference-free. The main energy cost is the target
device holding a GPIO pin high for one cycle to encode each
traced code point as it executes. We measured the cost of this
GPIO-based signaling to be negligible using the methodol-

libEDB API Debug Console Commands
assert(expr) charge|discharge energy level
break|watch point(id) break|watch en|dis id [energy level]
energy guard(begin|end) trace {energy,iobus,rfid,watchpoints}
printf(fmt, ...) read|write address [value]

Table 1: Developer’s interfaces into EDB.

ogy described in Section 5. Without EDB, monitoring has
a prohibitive cost in code, memory space, and energy. With
EDB, events are not only logged without these costs, but
also correlated with energy state into a multifaceted profile.

4.2 Developer’s Interfaces into EDB
EDB’s debugging primitives are accessible to the end-user
through two complimentary interfaces: the libEDB API and
the host console commands listed in Table 1. The libEDB

library statically links into the application and exports C
macros for inserting assertions, breakpoints, watchpoints,
energy guards, and energy-interference-free printf calls
into the application code. Internally, the library implements
the target-side half of the protocol for communicating with
the debugger over a dedicated GPIO line and a UART link,
which includes routines for reading from and writing to
target address space.

The debug console is a command-line interface for inter-
acting directly with EDB and indirectly with the target over a
USB connection from a workstation. During interactive de-
bugging in active mode, the console reports assert failures
and breakpoints hits and provides commands to inspect tar-
get memory. During passive mode debugging, the console
delivers traces of energy state, watchpoint hits, monitored
I/O events, and the output of printf calls. EDB can em-
ulate intermittence at the granularity of individual charge-
discharge cycles using the charge/discharge commands.

4.3 Implementation Details and Release
We prototyped EDB as a printed circuit board (PCB) that
connects to the target device via a board-to-board header.
Our core design is also compatible with an implementa-
tion as an on-chip component within the target device ar-
chitecture. EDB software includes 5600 lines of C code for
firmware, 1200 lines of C code for libEDB, and 1200 lines
of Python code for scripting API and host console.

5. Evaluation
The purpose of our evaluation is two-fold. First, we char-
acterize potential sources of energy interference and show
that EDB is energy-interference-free with detailed measure-
ments. Second, we use a series of case studies conducted
on a real energy-harvesting system to demonstrate that EDB
supports monitoring and debugging tasks that are impossible
with existing tools.

5.1 Experimental Setup
Our experimental setup consists of the EDB prototype
board, a target energy-harvesting device and wireless en-

ergy source, and measurement instruments. The EDB board
is always connected to a development workstation via USB
and to the target device through a dedicated header. EDB is
controlled from the workstation programmatically or manu-
ally through the console described in Section 4.2.

Our target device is a Wireless Identification and Sens-
ing Platform (WISP) version 5 [25]. The WISP has a 47 µF
energy storage capacitor, a turn-on threshold of 2.4 V, a
brown-out threshold of 1.8 V, and an active current of ap-
proximately 0.5 mA at 4 MHz. The WISP is intermittently
powered by RF radiation from an Impinj Speedway Revolu-
tion RFID reader. The reader is configured to continuously
inventory tags at a transmit power of up to 30 dBm using the
SLLURP toolset [3], and its antenna is placed at a distance
of 1 m from the WISP. The amount of harvestable energy
is inversely proportional to this distance. In our evaluation,
we ran a collection of different software applications on the
target device. We used a custom test program that manip-
ulates non-volatile linked-list, and another that generates a
persistent list of Fibonacci numbers. We also used two real
applications, including the official WISP 5 RFID firmware,
and a machine-learning-based activity recognition applica-
tion from prior work [18].

To validate and characterize EDB— especially its energy-
interference-freedom — we used some additional measure-
ment equipment that is not normally necessary when using
EDB. We collected data in the evaluation using a Tektronix
MDO4104 oscilloscope and a Keithley 2450 SourceMeter.
The oscilloscope channels were connected to the analog and
digital lines between EDB and the WISP in order to record
the capacitor voltage, moments when active debug mode
starts and ends, and events that trace application progress.

5.2 Energy-interference
EDB’s edge over existing debugging tools is its ability to re-
main isolated from intermittent power in passive mode and
to create an illusion of an untouched energy reservoir in ac-
tive mode. Next, we characterize these two modes of energy-
interference and show with measurements that neither com-
promises EDB’s energy-interference-freedom.

5.2.1 Current flow over electrical connections
Any current that flows between the target and the debug-
ger through the connections in Figure 5 may inadvertently
charge or discharge the capacitor on the target. As discussed
in Section 4, EDB’s circuits are designed to minimize the
amount of current that can flow across any of these connec-
tions to or from the target’s power supply. Imperfections in
components, such as reverse leakage current in the diodes,
inevitably cause some current to flow. We measured the max-
imum possible current flow over each connection and veri-
fied that in the absolute worst-case, when all lines are active,
the effect it can have on the target power supply is negligible.

We used a source meter to apply a voltage to the driving
endpoint of each connection and measure the resulting cur-

Debuger↔ Target DC Current (nA)
Connection Min Avg Max

Capacitor sense, manipulate -2.5100 0.1445 0.8300
Regulator sense, level reference -0.0300 -0.0029 0.0100

Debugger→Target comm. high -0.0200 -0.0004 0.0100
low -0.0300 -0.0200 -0.0100

Target→Debugger comm. high -0.0200 62.9349 108.2300
low -1.9200 -1.7982 -1.7100

Code marker (x2) high -0.0200 63.7853 111.5400
low -2.1600 -1.9770 -1.8300

UART RX high -0.0100 64.8042 111.2600
low -2.5500 -1.8909 -1.7200

UART TX high -0.0000 66.3433 139.8800
low -1.7900 -1.6705 -1.5600

RF RX high -0.0400 66.0402 115.0100
low -2.3000 -2.1271 -1.9900

RF TX high -0.0200 66.5382 117.9600
low -2.7300 -2.2726 -2.1600

I2C SCL high -0.0400 0.0358 0.0800
low -0.3200 -0.1780 -0.1500

I2C SDA high -0.0100 0.0367 0.0700
low -0.2800 -0.1754 -0.1400

Worst-Case Total Current 836.51 nA
Table 2: Measured worst-case current that can flow over electrical
connections between the target device and EDB.

rent. We measured each connection with digital logic end-
points in both LOW and HIGH states by applying either 0
V or 2.4 V, which is the maximum voltage that can arise on
any of the connections. We measured analog endpoints un-
der the worst-case condition of 2.4 V. The sum of the worst-
case current flow in either direction across all connections is
0.85 µA or 0.2% of the typical active mode current consump-
tion of the MCU in our target device. Table 2 characterizes
the energy interference, showing a breakdown of worst-case
current by connection, driving endpoint, and logic state.

5.2.2 Accuracy of manipulating target energy level
To support debugging tasks presented in Section 3, EDB
needs to save, change, and restore the amount of charge in
the target’s storage capacitor. A large discrepancy between
the saved and restored level can undermine the illusion of an
unaltered intermittent power supply that EDB presents to the
target software. We quantified this energy level discrepancy,
∆E, by measuring the voltage on the capacitor before and af-
ter a save-restore operation and applying the expression for
the energy stored in a capacitor: ∆E = 1

2C(V 2
restored−V 2

saved).
This quantity was then expressed as a percentage of the max-
imum energy storable on the target: ∆Ê = ∆E/(1

2CV 2
max),

where Vmax = 2.4 V.
We used the charge/discharge commands introduced in

Section 4.2 to run 50 trials of a save-restore operation. For
each trial, we set an energy-breakpoint at 2.3 V, charged the
target capacitor to 2.4 V, waited for the target execution to be
interrupted by the breakpoint, and then resumed the target.
Table 3 summarizes two independent sets of measurements
of ∆V = Vrestored−Vsaved, ∆E, and ∆Ê: one from our oscil-
loscope and one from EDB’s ADC. The accuracy of EDB’s
save-restore mechanism, ∆Ê, in our prototype implementa-

∆V (mV) ∆E (µJ) ∆Ê (%∗)
O-scope ADC O-scope ADC O-scope ADC

Mean 54 55 1.25 1.25 4.34 4.34
S.D. 16 7.8 0.37 0.18 1.30 0.62
∗ Energy cost is reported as percentage of 47µF storage capacity.
Table 3: Accuracy with which EDB saves and restores energy level
quantified as the difference in capacitor charge before saving and
after restoring and measured using either an external oscilloscope
or the internal ADC in EDB.

tion of EDB is, on average, 4.34% of the target’s 47µF en-
ergy storage capacitor. Our prototype’s energy level discrep-
ancy is small enough that it is unlikely to be problematic.
We expect that further software optimization will leave a
discrepancy closer to the accuracy limit imposed by EDB’s
ADC. A 12-bit ADC with effective resolution of approxi-
mately 1 mV imposes a theoretical lower bound on ∆Ê of
0.08%.

5.3 Debugging Capabilities
We now illustrate the new capabilities that EDB brings to the
development of intermittent software by applying it to de-
bugging tasks that are particularly difficult to resolve using
state-of-the-art tools. Energy-harvesting applications in the
following case studies execute intermittently and keep state
in non-volatile memory to make progress without relying on
a runtime checkpointing system. A reboot causes execution
to return to the program entry point (i.e., main).

5.3.1 Detecting memory corruption early
Memory corruption due to incorrect pointer arithmetic or
a buffer overflow is a frequent yet difficult problem to de-
bug. The root cause is obscured behind symptoms that are
far from the offending memory write in time and in space.
Memory corruption induced by intermittence is harder to di-
agnose still, because it is not reproducible in a conventional
debugger as discussed in Section 2.2. This section studies an
application that fails due to an intermittence-induced mem-
ory corruption and demonstrates how EDB’s support for as-
sertions exposes the root cause.
Application. The code listed in Figure 6 maintains a doubly-
linked list data structure in non-volatile memory. On each
iteration of the main loop, a node is appended to the linked
list if the list is empty or removed from the list otherwise.
The node is initialized with a pointer to a buffer in volatile
memory. This pointer is retrieved when the node is removed
from the list and data is written to the buffer it points to.1 For
illustrative purposes, at the beginning and end of the loop
iteration, the code toggles a GPIO pin to indicate that the
main loop is running.
Symptoms. After having run on harvested energy for some
amount of time, the GPIO pin indicating main loop progress

1 The role of the memory buffer in this example is to expose undefined
behavior during access to the linked list, which takes place with or without
the buffer, as an externally observable failure.

stops toggling. The real oscilloscope trace in the top of Fig-
ure 7 shows an early charge-discharge cycle when the main
loop is still executing and a later one when it no longer
does. After the main loop stops executing, the application
never returns to normal, including after reboots on subse-
quent charge-discharge cycles. The only way to recover is
to re-flash the device. Note that the failure problem never
occurs when the device runs on continuous power.
Diagnosis. Since the broken final state persists across re-
boots, one approach is to attach a conventional debugger af-
ter the failure and attempt to determine why the main loop
stopped running. This approach may help uncover the symp-
tom, but not the root cause, because the information that hap-
pens to persist in memory may not be sufficient to follow the
chain of events backwards in time. A better approach is to
catch the problem at its source by asserting an invariant
on the linked-list data structure whenever it is manipulated.
However, conventional assertions fall short in this case, be-
cause they let the target drain the energy supply, reset, and
continue past a failed assertion.

EDB’s intermittence-aware assert mechanism is de-
signed to tackle this class of bugs. We assert the invariant
that the tail pointer points to the last element in the list as
shown in Figure 6 and run the program on harvested energy
with EDB attached. EDB’s console reports the assertion fail-
ure, halts the program, starts continuously powering the tar-
get, and opens an interactive debug session. This sequence
is captured in the bottom oscilloscope trace in Figure 6. The
discharge cycle on the right is the one during which the as-
sert fails at instant 1 and the capacitor voltage is seen rising
to the level of the tethered power supply.

In the interactive debug session summarized on the right
in Figure 6, we check the device’s internal state using EDB’s
commands for inspecting target memory. The tail pointer
points to the penultimate element instead of the last one,
which is a consequence of an append interrupted by in-
termittence. Because of this inconsistency, the else-clause
in the remove function would dereference a NULL pointer,
read the buffer pointer from an invalid location, and cause
memset to write to a wild pointer and corrupt non-volatile
state beyond recovery. The assert and the interactive ses-
sion uncovered the precise inconsistency in the data structure
before any of these confounding consequences could take
place.

5.3.2 Instrumenting code with consistency checks
To aid in debugging, applications often have separate debug
and release build configurations. A debug build includes in-
strumentation code such as checks for consistency of data
structures or array bounds. On continuously-powered plat-
forms the convenience of the debug build comes at the cost
of slower execution speed, higher memory usage, and higher
energy consumption. However, on intermittently-powered
platforms, the effect is more dire: the energy overhead of

Figure 6: An intermittence bug that corrupts memory, diag-
nosed using EDB’s intermittence-aware assert (left) and in-
teractive console (right).

1.0

1.5

2.0

2.5

3.0

V
o
lt
a
g
e
 (
V
)

V cap

Main Loop

V brownout

40 50 60 70 80 90 100
1.0

1.5

2.0

2.5

3.0

V
o
lt
a
g
e
 (
V
)

V cap

Main Loop

V brownout

+40 +50 +60 +70 +80 +90 +100

1

Tethered power

...

...

Time (ms)

Figure 7: Oscilloscope trace of a memory-corrupting intermit-
tence bug and EDB’s intermittence-aware assert in action.
Without the assert (top) the main loop runs at first (left) but mys-
teriously stops running in later discharge-cycles (right). With the
assert (bottom), when it fails at instant 1, EDB halts the device
and tethers it to a continuous power supply.

instrumentation can render an application non-functional by
preventing it from making any forward progress. Yet, instru-
mented energy-harvesting applications must be run on har-
vested energy to diagnose intermittence-induced bugs, since
these bugs are invisible while the device is continuously
powered. In this case study we demonstrate how an applica-
tion can be instrumented with debug code of arbitrary energy
cost using EDB’s energy guards.
Application. The code in Figure 8 generates the Fibonacci
sequence and appends each number to a non-volatile, doubly-
linked list. For illustrative purposes, each iteration of the
main loop toggles a GPIO pin to track progress. In the de-
bug build, main begins with an energy-hungry consistency
check that traverses the list and asserts that the previous
and next pointers and the Fibonacci value in each node are
consistent. This invariant helps detect problems early be-
fore they precipitate into mysterious failures akin to the one
in Section 5.3.1. With intermittent power, the invariant was
violated in several experimental trials.
Symptoms. The application’s release build produces an in-
consistent list without any indication that there is a problem.

Figure 8: Application code instrumented with a consistency
check of arbitrary energy cost using EDB’s energy guards.

The debug build stops executing the main loop after having
added approximately 555 items to the list. The top trace in
Figure 9 shows an early charge cycle when the main loop
executes and a later one when it no longer does.
Diagnosis. The energy cost of the consistency check is
proportional to the length of the list. Once the list is long
enough, the consistency check consumes all the energy
available in one charge-discharge cycle and leaves none for
the main loop. Once reached, this hung state persists in-
definitely because the application cannot make progress in
subsequent charge-discharge cycles.

EDB lets the developer keep the consistency check with-
out breaking application functionality by wrapping the check
with energy guards as shown in Figure 8. The effect this has
on the target energy state is captured in the bottom oscil-
loscope trace in Figure 9. At instance 1, the target enters
the energy guard, and EDB tethers it to a power supply. The
capacitor starts charging, while the target continues execut-
ing the code within the energy guard. At instance 2, the tar-
get exits the energy guard, and EDB cuts the power supply
and starts to discharge the capacitor to the level it had at in-
stance 1. After the discharge completes, the target is allowed
to continue. This sequence of events later takes place again
between instances 3 and 4. With the energy guard around
the consistency check, the main loop gets the same amount
of energy in both early charge-discharge cycles when the list
is short (left) and later ones when it is longer (right).

5.3.3 Tracing events and profiling energy cost
Intermediate results of calculations, frequency of events, and
energy cost of operations are valuable clues for quick diag-
nosis of erroneous code. Directly extracting such informa-
tion from an energy-harvesting device using existing tools
changes the application’s behavior. For example, the sam-
ple rate of a sensing application may increase by a factor
of 100-1000x when powered continuously in the lab rel-
ative to when harvesting energy in a realistic deployment.
This section demonstrates how EDB’s energy-interference-
free printf and watchpoints can peek under the hood of
running code with minimal impact on application behavior.
Application. The activity recognition application outlined
in Figure 10 reads an accelerometer sample, classifies the
sample as “stationary” or “moving”, and records statistics in
non-volatile memory.

1.0

1.5

2.0

2.5

3.0

V
o
lt
a
g
e
 (
V
)

V cap

Main Loop

Check

V brownout

20 30 40 50 60 70 80
1.0

1.5

2.0

2.5

3.0

V
o
lt
a
g
e
 (
V
)

V cap

Main Loop

Check

V brownout

1 2

Tethered
power

+20 +30 +40 +50 +60 +70 +80

3 4

Tethered
power

...

...

Time (ms)

Figure 9: Oscilloscope trace of an application instrumented
with a consistency check of high energy cost. Without an energy
guard (top), the check and main loop both execute at first (left) but
only the check executes in later discharge-cycles (right). With an
energy guard (bottom), the check executes on tethered power from
instant 1 to 2 and 3 to 4, and the main loop always executes.

Symptoms. There is no evidence that the recorded statistics
are based on correct accelerometer readings and classifica-
tion results. Moreover, the application cannot be tuned to
the size of the storage capacitor without the energy profile
of one classification operation.
Diagnosis. Information can be extracted from the target de-
vice either over traditional debugger interface (e.g. JTAG) or
I/O peripherals (e.g. UART or GPIO ports). To relay a data
stream via a JTAG debugger, the target device must be on
during the entire debugging session. Off-the-shelf USB-to-
serial adapters are not electrically isolated from the target
UART and permit energy to flow into or out of the device.
Encoding information onto GPIO pins and decoding it using
an oscilloscope costs pins and significant effort compared to
a printf call that outputs text to a console on the host.

The measurements in Table 4 demonstrate the impact on
application behavior of using UART. The energy cost of the
print statement changes the iteration success rate, i.e. the
fraction of iterations that successfully complete out of the
total attempted. To trace application progress without dis-
rupting its behavior, we instrumented the loop body with an
EDB printf and three watchpoints as shown in Figure 10.
The printf produces a stream of intermediate classifica-
tion results for each iteration. The watchpoints produce a
time and energy profile of a loop iteration as well as an inde-
pendent calculation of the statistics that is useful for manual
verification. The energy profile shown in Figure 11 was cal-
culated from the difference between energy level snapshots
taken by watchpoints 1 and 2, and watchpoints 1 and 3. Ref-
erence classification statistics can be calculated by counting
occurrences of watchpoints 2 and 3.

Figure 10: Tracing and profiling an activity recognition ap-
plication using EDB’s energy-interference-free printf and
watchpoints.

Iteration Iteration Cost Print Cost
Success Energy Time Energy Time

Rate (%∗) (ms) (%∗) (ms)
No print 87% 3.0 1.1 - -
UART printf 74% 5.3 2.1 2.5 1.1
EDB printf 82% 3.4 4.7 0.11 3.1
∗ Energy cost is reported as percentage of 47µF storage capacity.
Table 4: Cost of debug output and its impact on the behavior of
the activity recognition application.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Energy cost (% of max capacity)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
 P
ro
b
a
b
ili
ty

No print

UART printf

EDB printf

Figure 11: Energy profile of one loop iteration in the activity
recognition application when instrumented with different out-
put mechanisms.

5.3.4 Debugging and tuning RFID applications
Energy-harvesting applications that communicate over the
RFID protocol are difficult to debug without simultaneous
visibility into communication and energy state. This case
study demonstrates how EDB can monitor RFID I/O mes-
sages and correlate them with available energy.
Application. The WISP RFID firmware [31] decodes RFID
query commands from a reader in software and replies with
a unique identifier.
Symptoms. The application and reader cannot be character-
ized and tuned without a measure of the target’s performance
in different RF environments, e.g. the number of responses
per queries received. Correctness cannot be verified without

1.6

1.8

2.0

2.2

2.4

C
a
p
a
ci
to
r
V
o
lt
a
g
e
 (
v
)

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

RSP_GENERIC

CMD_QUERY

CMD_QUERYREP

5.10 5.15 5.20 5.25
Time (sec)

RSP_GENERIC

CMD_QUERY

Figure 12: Incoming and outgoing RFID messages correlated
with energy level recorded by EDB.

evidence that the application software successfully decodes
and acts on each valid incoming query message.
Diagnosis. Both tasks require a trace of incoming messages
that reached the target, i.e. bit patterns in the incoming de-
modulated waveform that could have been decoded into
valid messages by software. An oscilloscope trace of the
raw output from the RF demodulator does not reveal whether
the waveform is decodable into a valid message. A decoder
is necessary to separate messages that were corrupted in
flight from valid messages that the target application failed
to parse.

We use EDB to stream RFID message identifiers and tar-
get energy readings to the host. From data plotted in Fig-
ure 12 we find that in our lab setup the application responded
86% of the time for an average of 13 replies per second. The
view focused on one discharge cycle confirms that the ap-
plication successfully received consecutive incoming query
messages and replied. To produce such a mixed trace of I/O
and energy using existing equipment, the target would have
to be burdened with logging duties that exceed the compu-
tational resources left after message decoding and response
transmission.

6. Related Work
We discuss several areas of prior work that are especially
related to EDB. Some recent work proposes models and
emulators for energy-harvesting environments. Much effort
is dedicated to improving the reliability of energy-harvesting
systems. Earlier work explored debugging in continuously
powered sensor nodes.

6.1 Modeling and emulation of energy sources
Ekho [9] is a device that records the amount of energy
harvested by a harvesting circuit and reproduces the trace as
power input into an application device. Ekho can reproduce
problematic program behavior, but it cannot offer insight
into this behavior. Complementary to Ekho’s features, EDB

offers debugging mechanisms for inspecting the program
state and correlating program events to the energy level.

Application behavior on an intermittent energy source
can be partially inferred from a simulation. Computational
RFID Crash Test Simulator (CCTS) [8] can produce a volt-
age trace representative of a solar harvester with a specified
capacitor size and load. CCTS is useful for exploring the de-
sign space for a new energy-harvesting application, but not
for in situ debugging tasks that EDB is designed for.

6.2 Reliability in Intermittent Devices
Prior work pointed out that intermittent execution threatens
forward progress [24] and memory consistency [18, 23].
There are three main approaches taken by prior work to
combat these threats to reliability. The first approach is to
tolerate intermittent failures by selectively capturing and
restoring program state. The second is to avoid intermittent
failures through aggressive duty cycling and scheduling. The
last is to eliminate intermittence with non-volatile hardware.

EDB is related to these approaches because all of them
aim to improve correctness of code and reliability of inter-
mittent executions. EDB, however, is largely orthogonal to
these approaches as they are mostly changes to the program-
ming or execution model. Instead, the purpose of EDB is
to give a programmer visibility into a system to understand
why intermittence is causing problems, even in emerging
programming and execution models.
Tolerating Intermittent Failures. Mementos [24] first equip-
ped energy-harvesting computers to make progress through
long-running workloads. Mementos checkpoints volatile
state into the device’s non-volatile state to preserve exe-
cution context and data across power failures. QuickRe-
call [11] took a similar approach with hardware support and
Idetic [20] applied the idea to ASICs.

More recent work [23] observed that even with measures
to ensure progress, intermittent execution can leave a sys-
tem’s memory in an inconsistent state. DINO [18] charac-
terized the intermittent execution model and addressed these
consistency issues with a task-based programming and exe-
cution model that selectively preserves both non-volatile and
volatile memory across power failures.
Avoiding Intermittent Failures. Other prior work aims to
avoid failures due to intermittence by scheduling and duty
cycling. Eon [28] is one of the first efforts at avoiding inter-
mittence failures in a solar-powered device. Eon associates
computational tasks with their expected energy consump-
tion, and a scarcity of energy causes the system to desched-
ule expensive tasks. Dewdrop [4] is a scheduler that brings
an RF-harvesting device [25] into and out of deep sleep
states that consume little energy. Dewdrop schedules tasks
based on the likelihood that they will successfully execute,
given the available energy. Hibernus [2] assumes hardware
with a large capacitor that stores energy during execution.
When power fails, Hibernus uses the stored energy to check-

point volatile state and puts the device to sleep, preserving
volatile state and avoiding some failures.
Eliminating Intermittent Failures. Other prior work aims
to eliminate intermittence with pervasive non-volatile hard-
ware. Several recent papers [17, 19] discussed different ap-
proaches to using microarchitectural non-volatility to pre-
vent power intermittence from leading to intermittent soft-
ware execution. These efforts require invasive hardware
changes and operate more slowly than conventional hard-
ware. However, by making microarchitectural state persis-
tent, these systems prevent progress and consistency issues
due to intermittence.

6.3 Debugging in Embedded Wireless Sensor Nodes
Prior to recent interest in energy-harvesting systems [13, 25],
there was considerable interest in battery-powered wireless
sensor nodes [10, 12]. Sensor nodes necessitated program-
ming [5] and operating system [7, 14] support, which in turn
created a need for development and debugging support.

Clairvoyant [32] is the closest work from this era to EDB
because, like EDB it provides interactive debugging capa-
bilities. The system tries to minimize its effect on the pro-
gram being debugged, in terms of memory use, network
traffic, and system lifetime. However, because Clairvoyant
targets powered nodes, it does not (need to) address energy-
interference-freedom. Additionally, Clairvoyant does not
discuss features supported by EDB like assertions, energy
manipulation, or instrumentation.

Sympathy [22] provides support for debugging networks
of sensor nodes. The scope of Sympathy is restricted to
determining why data collection nodes stop sending data
to “sink” nodes in the network. This work uses a series of
metrics and an inference step to isolate failures and is largely
orthogonal in purpose and mechanism to EDB.

TinyTracer [29] supports lightweight event tracing for
sensor node programs written in nesC [5]. Its traces enable
execution replay and manual failure analysis. Like Tiny-
Tracer, EDB provides lightweight event tracing, although
EDB does not trace all events, only marked ones. In con-
trast, EDB provides fine-grained energy tracing, as well
as energy-interference-free active mode tasks. Moreover,
EDB’s instrumentation support may be able to make Tiny-
Tracer energy-interference-free.

T-Check [15] and KleeNet [26] use model checking and
symbolic execution (respectively) to expose failures in sen-
sor node programs. Both are orthogonal to EDB, as they do
not support monitoring or interactive debugging. Addition-
ally, these systems do not address intermittence; however,
if we assume they could be re-engineered to work on inter-
mittent systems, they would be complementary to EDB: A
developer could use EDB’s debugging capabilities to under-
stand and fix failures that they expose.

7. Conclusion
Intermittently executing, energy-harvesting devices present
unique system reliability challenges, and our work in EDB
presents the first debugging system that is designed to ad-
dress those challenges. We identified energy-interference-
freedom as a property that is essential to the utility of a de-
bugging platform for power intermittent systems and built
EDB to espouse that property from its circuits to its soft-
ware. EDB supports passive monitoring of a target device’s
energy, software events, and I/O. Using its ability to manip-
ulate a target device’s energy, EDB also supports active de-
bugging tasks with energy-interference-freedom, including
assertions, instrumentation, tracing, and interactive debug-
ging. We evaluated our prototype of EDB, including cus-
tom hardware, showing that it is energy-interference-free in
both its passive and active tasks, and that it provides in-
valuable debugging information that is out of reach using
existing tools and techniques. We see EDB and its energy-
interference-freedom as a key part of future support for reli-
ability in intermittent energy-harvesting devices.

8. Acknowledgements
We thank the anonymous reviewers for their time and valu-
able feedback. Thanks to Preeti Murthy for beta-testing our
EDB prototype. This work was generously supported by
Disney Research Pittsburgh and National Science Founda-
tion grant CNS-1526342.

References
[1] IEEE standard for reduced-pin and enhanced-functionality

test access port and boundary-scan architecture. IEEE Std
1149.7-2009, pages 1–985, Feb 2010.

[2] D. Balsamo, A. Weddell, G. Merrett, B. Al-Hashimi,
D. Brunelli, and L. Benini. Hibernus: Sustaining computa-
tion during intermittent supply for energy-harvesting systems.
Embedded Systems Letters, IEEE, PP(99):1–1, 2014.

[3] Ben Ransford. SLLURP - Python Client for LLRP-based
RFID Readers. https://github.com/ransford/sllurp.
Visited August 10, 2015.

[4] M. Buettner, B. Greenstein, and D. Wetherall. Dewdrop:
An energy-aware task scheduler for computational RFID. In
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI), Mar. 2011.

[5] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proceedings of the ACM SIG-
PLAN 2003 Conference on Programming Language Design
and Implementation, PLDI ’03, pages 1–11, New York, NY,
USA, 2003.

[6] S. Gollakota, M. S. Reynolds, J. R. Smith, and D. J. Wetherall.
The emergence of RF-powered computing. Computer, 47(1),
2014. doi: http://dx.doi.org/10.1109/MC.2013.404.

[7] L. Gu and J. A. Stankovic. T-kernel: Providing reliable OS
support to wireless sensor networks. In Proceedings of the

4th International Conference on Embedded Networked Sensor
Systems, SenSys ’06, pages 1–14, New York, NY, USA, 2006.

[8] J. Gummeson, S. S. Clark, K. Fu, and D. Ganesan. On the
limits of effective hybrid micro-energy harvesting on mobile
CRFID sensors. In Proceedings of the 8th International Con-
ference on Mobile Systems, Applications, and Services, Mo-
biSys ’10, pages 195–208, New York, NY, USA, 2010.

[9] J. Hester, T. Scott, and J. Sorber. Ekho: Realistic and repeat-
able experimentation for tiny energy-harvesting sensors. In
Proceedings of the 12th ACM Conference on Embedded Net-
work Sensor Systems, SenSys ’14, pages 1–15, New York, NY,
USA, 2014.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pis-
ter. System architecture directions for networked sensors. In
Proceedings of the Ninth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS IX, pages 93–104, New York, NY, USA,
2000.

[11] H. Jayakumar, A. Raha, and V. Raghunathan. QuickRecall:
A low overhead HW/SW approach for enabling computations
across power cycles in transiently powered computers. In Int’l
Conf. on VLSI Design and Int’l Conf. on Embedded Systems,
Jan. 2014.

[12] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century
challenges: Mobile networking for “smart dust”. In Proceed-
ings of the 5th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, MobiCom ’99, pages
271–278, New York, NY, USA, 1999.

[13] Y. Lee, G. Kim, S. Bang, Y. Kim, I. Lee, P. Dutta, D. Sylvester,
and D. Blaauw. A modular 1mm3 die-stacked sensing plat-
form with optical communication and multi-modal energy
harvesting. In Solid-State Circuits Conference Digest of Tech-
nical Papers (ISSCC), 2012 IEEE International, pages 402–
404, Feb 2012.

[14] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler.
Ambient Intelligence, chapter TinyOS: An Operating System
for Sensor Networks. 2004.

[15] P. Li and J. Regehr. T-Check: Bug finding for sensor net-
works. In Proceedings of the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks,
IPSN ’10, pages 174–185, New York, NY, USA, 2010.

[16] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and
J. R. Smith. Ambient backscatter: Wireless communication
out of thin air. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, pages 39–50,
New York, NY, USA, 2013.

[17] Y. Liu, Z. Li, H. Li, Y. Wang, X. Li, K. Ma, S. Li, M.-F. Chang,
S. John, Y. Xie, J. Shu, and H. Yang. Ambient energy harvest-
ing nonvolatile processors: From circuit to system. In Pro-
ceedings of the 52Nd Annual Design Automation Conference,
DAC ’15, pages 150:1–150:6, New York, NY, USA, 2015.

[18] B. Lucia and B. Ransford. A simpler, safer programming and
execution model for intermittent systems. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2015, pages 575–
585, New York, NY, USA, 2015.

[19] K. Ma, Y. Zheng, S. Li, K. Swaminathan, X. Li, Y. Liu,
J. Sampson, Y. Xie, and V. Narayanan. Architecture explo-
ration for ambient energy harvesting nonvolatile processors.
In High Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, pages 526–537, Feb
2015.

[20] A. Mirhoseini, E. M. Songhori, and F. Koushanfar. Idetic: A
high-level synthesis approach for enabling long computations
on transiently-powered ASICs. In IEEE Pervasive Computing
and Communication Conference (PerCom), Mar. 2013.

[21] J. A. Paradiso and T. Starner. Energy scavenging for mobile
and wireless electronics. IEEE Pervasive Computing, 4(1):
18–27, 2005. doi: http://dx.doi.org/10.1109/MPRV.2005.9.

[22] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the sensor network debugger. In Pro-
ceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, SenSys ’05, pages 255–267, New
York, NY, USA, 2005.

[23] B. Ransford and B. Lucia. Nonvolatile memory is a broken
time machine. In Proceedings of the Workshop on Memory
Systems Performance and Correctness, MSPC ’14, pages 5:1–
5:3, New York, NY, USA, 2014.

[24] B. Ransford, J. Sorber, and K. Fu. Mementos: System support
for long-running computation on RFID-scale devices. In
ASPLOS, Mar. 2011.

[25] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev,
and J. R. Smith. Design of an RFID-based battery-free pro-
grammable sensing platform. IEEE Transactions on Instru-
mentation and Measurement, 57(11):2608–2615, Nov. 2008.

[26] R. Sasnauskas, O. Landsiedel, M. H. Alizai, C. Weise,
S. Kowalewski, and K. Wehrle. KleeNet: Discovering insid-
ious interaction bugs in wireless sensor networks before de-
ployment. In Proceedings of the 9th ACM/IEEE International
Conference on Information Processing in Sensor Networks,
IPSN ’10, pages 186–196, New York, NY, USA, 2010.

[27] SEGGER. J-Link JTAG Isolator . https://www.segger.

com/jtag-isolator.html, 2015.

[28] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Cor-
ner, and E. D. Berger. Eon: A language and runtime system
for perpetual systems. In Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems, SenSys
’07, pages 161–174, New York, NY, USA, 2007.

[29] V. Sundaram, P. Eugster, X. Zhang, and V. Addanki. Diag-
nostic tracing for wireless sensor networks. ACM Trans. Sen.
Netw., 9(4):38:1–38:41, July 2013. ISSN 1550-4859.

[30] TI Inc. Overview for MSP430FRxx FRAM. http://ti.

com/wolverine, 2014. Visited July 28, 2014.

[31] WISP. WISP - Firmware Repository for WISP 5.0. https:

//github.com/wisp/wisp5. Visited August 10, 2015.

[32] J. Yang, M. L. Soffa, L. Selavo, and K. Whitehouse. Clair-
voyant: A comprehensive source-level debugger for wireless
sensor networks. In Proceedings of the 5th International Con-
ference on Embedded Networked Sensor Systems, SenSys ’07,
pages 189–203, New York, NY, USA, 2007.

