
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
P

Production-guided Concurrency Debugging

Nuno Machado
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal
nuno.machado@tecnico.ulisboa.pt

Brandon Lucia
Carnegie Mellon University, USA

blucia@ece.cmu.edu

Luı́s Rodrigues
INESC-ID, Instituto Superior Técnico,

Universidade de Lisboa, Portugal
ler@tecnico.ulisboa.pt

Abstract
Concurrency bugs that stem from schedule-dependent branches are
hard to understand and debug, because their root causes imply not
only different event orderings, but also changes in the control-flow
between failing and non-failing executions. We present Cortex: a
system that helps exposing and understanding concurrency bugs
that result from schedule-dependent branches, without relying on
information from failing executions. Cortex preemptively exposes
failing executions by perturbing the order of events and control-
flow behavior in non-failing schedules from production runs of
a program. By leveraging this information from production runs,
Cortex synthesizes executions to guide the search for failing sched-
ules. Production-guided search helps cope with the large execution
search space by targeting failing executions that are similar to ob-
served non-failing executions. Evaluation on popular benchmarks
shows that Cortex is able to expose failing schedules with only a
few perturbations to non-failing executions, and takes a practical
amount of time.

1. Introduction
Concurrent programming has hit the mainstream, because it en-
ables software to take advantage of parallelism in pervasive mul-
ticore computer architectures. Unfortunately, expressing concur-
rency in multi-threaded code is more challenging than writing
sequential code. The reason is that multi-threaded programs of-
ten permit many different schedules of operations from different
threads. Hence, a program’s outcome may vary from run to run,
depending on the executed schedule. Many schedules are correct,
but some failing schedules result in misbehavior, like a crash or
data corruption.

A large body of research has focused on exposing failing sched-
ules and exhaustively testing for failures [12, 15, 17, 47]. To find a
failing schedule is a challenging problem: the subset of thread or-
derings that lead to the failure often corresponds to a tiny portion
of the space of possible execution schedules and those few failing
schedules may manifest rarely. Furthermore, the variation in the
schedule in a failing execution may cause a variation in the execu-
tion’s data flow, and subsequently, its control-flow. Such schedule-
dependent branches further complicate the task of exposing failing
schedules, because one has to explore not only the space of possible
thread schedules for a given execution path, but also the space of

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16, March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2851141.2851149

different execution paths. Since this huge search space makes com-
plete exhaustive testing infeasible, some failures will likely mani-
fest in deployment.

This work aims at exposing failures that may include schedule-
dependent branches, without ever needing to observe a failing ex-
ecution. We leverage the observation that a failing schedule typi-
cally deviates in only a few critical ways from a non-failing sched-
ule [33]. Our main insight is to expose new failing schedules by per-
turbing the order of events and certain branch outcomes in a non-
failing schedule. We further leverage abundant production runs of a
program on deployed systems to guide our search of the enormous
space of possible execution schedules [5]: our production-guided
search for a failing schedule targets schedules very similar to a non-
failing schedule observed in production.

We present Cortex1, a system that helps exposing and under-
standing concurrency bugs using traces from normal, non-failing
production executions. Figure 3 depicts an overview of our system.
Cortex starts by collecting a set of per-thread path profiles from one
or more production runs. Each profile is used to guide a symbolic
execution of the program producing a symbolic event trace for each
thread that is compatible with the original execution’s control-flow.
Cortex combines an execution’s per-thread symbolic traces to im-
plement production-guided search for a new, failing execution –
one that may depend on both schedule and path conditions.

Cortex’s production-guided search is a novel approach to select-
ing a path and schedule. Starting from the computed symbolic ex-
ecution, Cortex systematically reorders events in the schedule and
inverts the outcome of certain branches, with a preference for ex-
ecutions that are most similar to the original. Cortex determines
if a perturbed execution is feasible using a constraint system for a
Satisfiability Modulo Theories (SMT) solver. The constraint system
encodes synchronization, data-flow, event ordering, and the occur-
rence of a failure. If the SMT formulation is satisfiable, the exe-
cution that Cortex generated is feasible and the system reports the
new failure. If the SMT formulation is infeasible, Cortex moves on
to a different perturbation of the execution’s schedule and branch-
ing behavior. Cortex favors executions that vary only slightly from
the original, observed execution, putting its focus on failures that
very nearly manifested in a previous execution.

In this paper, we consider failures to be violations of assertions
in the code. We argue that it is common for developers to ship
code with assertions. For instance, Google pervasively uses trac-
ing and assertions throughout live, production datacenter code via
Dapper [45]. Also, recent work showed that invariants can often
be derived automatically [24], which broadens the applicability of
Cortex.

1 We have named our system Cortex after the cerebral cortex, which is a part
of the human brain that receives and processes information from neurons to
control several functions of the human body. Likewise, our system leverages
information from multiple production runs to expose concurrency bugs.

In addition to exposing failing schedules, Cortex is also able
to isolate the failure’s root cause. The root cause of a failure is the
minimum sequence of events in the schedule that cause the program
to fail. A failing schedule may contain many events and the failure’s
root cause could be anywhere in the schedule, which makes debug-
ging a complex task. Failures resulting from schedule-dependent
branches further exacerbate this problem, because the programmer
must reason about different events in a failing execution and in a
non-failing one.

Cortex leverages production-guided search to extend previous
work on differential schedule projections [33] and compute differ-
ential path-schedule projections (DPSPs). DPSPs zero in on the
root cause of failures that stem from schedule-dependent branches
by reporting the differences between a failing and a non-failing
schedule, including variations in their event orderings, data-flow
behavior, and control-flow decisions.

Our evaluation in Section 6 shows that Cortex is able to find
failing schedules in concurrent programs by perturbing very few
branch conditions. Moreover, we show that Cortex’s production-
guided search reduces the number of attempts to expose concur-
rency bugs by up to three orders of magnitude with respect to pre-
vious state-of-the-art concurrency testing techniques [12, 17].

In summary, this paper makes the following contributions:
i) A cooperative scheme to collect and analyze thread path-

profiles from production runs.
ii) A novel, production-guided approach to exposing path and

schedule dependent failures by exploring variations in schedule and
control-flow behavior in non-failing executions.

iii) A technique to synthesize new executions similar to ob-
served ones leveraging traces collected from production, as well
as symbolic execution.

iv) An implementation of Cortex for Java and an evaluation,
with widely used benchmarks and real-world applications, showing
that Cortex is efficient and effective for exposing and debugging
hard concurrency bugs.

The rest of the paper is organized as follows. Section 2 overviews
the background concepts most related to our work. Section 3
describes the Cortex system, namely its architecture and the
production-guided search used to find failing schedules. Section 4
provides a concrete example that illustrates how Cortex employs
the production-guided search to expose a concurrency bug that
depends on schedule-sensitive branches. Section 5 discusses the
implementation details. Section 6 presents the experimental eval-
uation results and discuss the main findings. Finally, Section 7
reviews the related work.

2. Motivation and Background
Cortex exposes new concurrency bugs and helps their diagnosis.
This section overviews concurrency bugs and debugging, as well
as techniques from prior work that form the foundation of Cortex.

2.1 Concurrency Bugs
Concurrency bugs are errors in code that permit operations from
different threads to execute in an order that causes the program
to fail — concurrency bugs permit failing execution schedules.
Concurrency bugs include omitted and misused synchronization
and inter-thread communication. For example, consider the mul-
tithreaded program in Figure 1. This program has two threads (T1
and T2), which access a shared variable x. T1 increments the value
of x (which is initially set to 0) and then checks whether this value
is greater than 0. In turn, T2 simply writes 0 to x.

This program has two possible outcomes: it either validates or
violates the assertion at line 2, depending on the order in which
threads execute their operations. The program fails for the sched-
ule 1-3-2 and ends correctly for the schedules 3-1-2 and 1-2-3.

T1
1: x++
2: assert(x > 0)

 3: x = 0
T2

(initially x = 0)

Figure 1: Example of a multithreaded program with a schedule-
dependent bug.

The example is an atomicity violation, because the block of oper-
ations in T1 should execute atomically, without being interleaved
by operations from T2, but the code fails to enforce the atomicity.
Atomicity violations and other types of concurrency bugs (e.g. or-
dering violations and data-races) have been studied extensively in
the literature [9, 14, 27–31, 38, 43, 53, 54] and we defer to prior
work for a more thorough background on concurrency bug types.

Regardless of the type, some concurrency bugs are strictly
schedule-dependent. The error in Figure 1 is an example of a
strictly schedule-dependent bug: threads in both the failing and
non-failing schedules execute the same sequence of instructions,
but the schedules differ in the threads’ operations interleaving.

Unlike the bug in Figure 1, not all concurrency bugs are strictly
schedule-dependent. Some concurrency bugs are path and schedule
dependent, instead, like the example in Figure 2. In the example, T1
and T2 access four shared variables (x, y, w, and z). The program
fails when it executes the schedule 8-1-2-3-4-9-10-5-6-7, which
causes the value of x at line 7 to be 0 and violate the assertion. All
non-failing schedules for this program exhibit a different control-
flow path than the failing schedule, because the code must not
execute line 6, to guarantee that x > 0 at line 7. The key distinction
between this example and the example in Figure 1 is that the failing
execution requires a variation from the correct execution in both
the order of events (i.e., the schedule) and in the control-flow path
executed. The next section discusses the challenges of path and
schedule dependent bugs.

T1
1: if(z > 0)
2: w++
3: x = 1
4: y = 1
5: if(y == 0)
6: x--
7: assert(x > 0)

 8: z = 1
 9: if(w > 0)
10: y = 0

T2
(initially x = y = w = z = 0)

Figure 2: Example of a multithreaded program with a path and
schedule dependent bug.

2.2 Challenges of Path and Schedule Dependent Bugs
Testing for and debugging path and schedule dependent bugs is
more complex and challenging than for strictly schedule-dependent
bugs. The reason for the difference is that path and schedule depen-
dent bugs require searching not only for an inter-thread operation
order, but also for a new execution path that is compatible with such
a failing schedule.

Testing. Stateless model checking systems like con2colic test-
ing [11] and MCR [17] leverage SMT constraint solving to expose
concurrency bugs. By encoding the possible thread schedules for a
given execution path as a constraint system, these systems are able

to check properties and search for failures in a set of schedules, for
a given single execution path. Other systematic concurrency testing
techniques systematically exercise many different schedules for the
same control-flow path [16, 34]. Systematic schedule search works
for strictly schedule-dependent bugs, but path and schedule depen-
dent bugs require a tool to simultaneously explore all control-flow
paths to find a path and schedule that leads to the failure. This
requirement illustrates an important challenge: the space of paths
and schedules explodes with an execution’s length and quickly be-
comes unwieldy and infeasible to search. In this work, we address
search space explosion using the local, production-guided search
technique that we describe in Section 3.3.

Debugging. Debugging tools like CLAP [20] and Symbiosis [33]
use symbolic execution and SMT constraint solving for automatic
debugging. Both systems use per-thread path profiles from a con-
crete failing execution to generate and replay a failing schedule.
While CLAP is only focused on reproducing failures, Symbiosis
is able to diagnose them as well, by systematically reordering op-
erations in a failing schedule to produce an alternate schedule that
does not trigger the failure. Symbiosis uses a differential analysis
of the alternate and the original schedule to isolate a failure’s cause
and produce a differential schedule projection [33].

Symbiosis and CLAP do not handle path and schedule depen-
dent bugs: CLAP only computes failing schedules and Symbiosis’
alternate schedules are required to adhere to the original control-
flow of the original execution. Furthermore, both Symbiosis and
CLAP need a trace from a failing execution to work, which may be
hard to obtain. For instance, we ran the program in Figure 2 10,000
times and it did not fail a single time.

In this work, Cortex couples its production-guided search with
symbolic execution and SMT solving ideas from Symbiosis and
CLAP to address schedule and path dependent bugs without the
need to observe a failing execution. Section 7 provides a more
thorough comparison between Cortex and Symbiosis.

2.3 Computing Schedules with Symbolic Execution and
Constraint Solving

Cortex leverages the multithreaded trace generation technique de-
veloped in CLAP [20] and refined in Symbiosis [33]. The technique
uses concrete, per-thread path profiles to guide a symbolic execu-
tion of the program and generate per-thread symbolic traces (see
Section 3.2). The technique then builds an SMT constraint formu-
lation that is based on the per-thread symbolic traces. When solved
by an off-the-shelf SMT solver, the formulation yields a failing,
multi-threaded schedule. We defer a full discussion of this formu-
lation to its original work [20], but provide background here.

The constraint formulation has two kinds of variables: value
variables, which represent symbolic values returned by read opera-
tions, and order variables, which represent the order of operations
in a schedule. The constraint system, Φfail, is a conjunction of five
sub-formulae:

Φfail = φpath ∧ φsync ∧ φrw ∧ φmo ∧ ¬φassert

Briefly, φpath encodes the path conditions corresponding to the
path executed by each thread; φsync encodes inter-thread ordering
imposed by synchronization; φrw encodes inter-thread ordering im-
plied by accesses to shared memory; φmo encodes possible opera-
tion reorderings permitted by the memory consistency model; and
¬φassert encodes the failure constraint, which corresponds to an
assertion failure.

Symbiosis [33] observed that a similar constraint formulation,
Φok, yields a non-failing schedule, without the failure condition
negated:

Φok = φpath ∧ φsync ∧ φrw ∧ φmo ∧ φassert

Therefore, for a given execution control-flow, the constraint
system can be used to obtain an execution schedule that either fails
or ends successfully, depending on whether the failure condition
is satisfied or not, respectively. In the following, we describe each
sub-formula in more detail.

Path Constraint φpath is a conjunction of all threads’ path con-
ditions (i.e., branch outcomes), recorded during symbolic execu-
tion [4, 51]. For instance, a possible path constraint for an execu-
tion of the program in Figure 2 would be [z > 0] ∧ [¬(y==0)] for
T1 and [w > 0] for T2.

Synchronization Constraints. φsync is divided into partial order
constraints and locking constraints.

The former encode the happens-before relation [25] between or-
dering synchronization operations (e.g., signal, wait, join, fork). For
instance, the constraints state that i) one thread’s start/join event
happens after another thread’s fork/exit event. Locking constraints
encode mutual exclusion of code protected by a lock. These con-
straints match a thread’s unlock operations to a preceding unlock in
that thread.

Read-Write Constraints. φrw encodes the ordering and result of
shared memory read and write operations. The read-write con-
straints express the fact that a read from a variable returns the sym-
bolic value written by the last write to that variable.

For example, in Figure 2, if T1 reads the value 1 for the variable
z at line 1, then the most recent write to z must be the one at line 8
by T2 and, consequently, line 8 must execute before line 1.

Memory Order Constraints. φmo determines the order in which
operations occur in a specific thread. In Cortex, we consider that
operations execute in program order, i.e. following a sequencial
consistent memory model. However, it is possible to express more
relaxed memory consistency models using slightly different con-
straints [20].

Failure Constraint. φassert corresponds to the condition that, if
unsatisfied, indicates that an execution failed. For a failing execu-
tion, Φfail, the failure condition must be violated (i.e., ¬φassert
must hold). On the other hand, for a correct execution Φok, φassert
must be true. In Figure 2, ¬φassert corresponds to [x≤0] and
φassert corresponds to [x>0].

3. Cortex
Cortex is an automated system for exposing and debugging path
and schedule dependent failures in multithreaded programs. In
contrast with other systems, Cortex does not need to observe a
failed execution to isolate a failure. Instead, Cortex starts from
a concrete, non-failing execution and explores alternative execu-
tions with only minor variations in their schedule and path from
the non-failing schedule. Using an initial, non-failing execution
from production turns Cortex’s execution space exploration into a
production-guided search for new failures. The exposed failures
represent behavior that nearly happened in the observed execution,
and is, thus, more likely to happen in some future execution. Cortex
summarizes only the differences between the exposed failing exe-
cution and the original non-failing execution to clearly isolate the
root cause of the failure to the developer.

Cortex operates in four main steps: static analysis, trace col-
lection, production-guided search, and root cause isolation. These
steps are illustrated in Figure 3 and described in the following sec-
tions.

3.1 Static Analysis
Cortex starts by performing a static program analysis with two
goals. The first goal is to instrument the beginning of each basic

...

...

thread path profiles

production runs

instrumented
program 01001

10011
10100

x@12
y@15

…

shared
variables

thread symbolic
traces

Production-guided
Schedule Search

failing schedule

non-failing schedule

T1 T2 T1 T2

differential path-schedule
projection (DPSP)

T1 T2

T1 T2
Root Cause

Isolation

Wz@20
Ww@22

…
Rx@12
Wy@15=1
…

Static
Analysis

1

3 4

Cortex

Trace
Collection

2

Figure 3: Overview of Cortex. 1) Cortex starts by instrumenting the program in order to allow capturing per-thread path profiles at runtime.
2) Cortex uses the path profiles, collected from multiple production runs, to guide a symbolic execution of the program and produce per-thread
symbolic event traces that adhere to the original executions’ control-flow. 3) Cortex leverages symbolic traces and SMT constraint solving to
conduct a production-guided search for a new failing execution that may depend on both schedule and path conditions. 4) Whenever Cortex
successfully uncovers a new failing schedule, it computes a differential path-schedule projection (using the uncovered failing schedule and a
non-failing schedule) to isolate the underlying bug.

block in the program to trace the control-flow path followed in a
concrete execution. The second goal is to identify shared variables.
Non-private (i.e., shared) variables and local variables derived from
those variables are marked as symbolic. Marking shared variables
as symbolic is a pre-requisite to Cortex’s symbolic trace collection
and generation mechanism (described next).

3.2 Trace Collection
Given the infeasibility of exhaustively exploring all possible exe-
cutions of a program, Cortex narrows the exploration to favor those
paths that are most like those observed in production.

Concrete Trace Collection. The version of the program instru-
mented by Cortex collects per-thread path profiles [20, 33]. A path-
profile is a sequence of basic blocks (i.e., control-flow outcomes)
that was followed by the thread at runtime.

Note that traces collected at this stage do not have any infor-
mation concerning thread scheduling, nor regarding which events
were executed during the production run. The reason is because
recording the precise thread interleaving incurs heavy runtime
overhead [19]. Hence, as previous work [20], we opt for a more
lightweight logging approach to capture runtime information.

Production runs with the same control-flow output identical
traces. However, paths with different control-flow may execute in
production. Cortex can collect a variety of paths from multiple,
different executions, potentially from distinct machines and execu-
tion environments. This form of cooperative path collection enables
Cortex to leverage the execution diversity in multiple deployments
to gather a representative collection of traces.

Symbolic Trace Generation. Cortex uses symbolic execution to
generate per-thread, symbolic traces from the collected, per-thread,
concrete traces. Cortex augments the collected, per-thread path
traces offline with information about shared variables from its static
analysis. Cortex marks as symbolic all shared variables and lo-
cal variables that depend on shared variables. These symbolic an-
notations mean that later, when Cortex does symbolic execution,
reads and writes to these variables manipulate symbolic expres-
sions, rather than concrete values.

Cortex performs a symbolic execution of the program, guiding
each thread’s symbolic execution by its path trace. In other words,
the symbolic execution proceeds solely across the execution path
indicated by its corresponding path profile. As a result, instead of

unsatisfiable

Constraint
Model

Generation

thread symbolic
traces

Constraint
SolvingΦfail

failing
constraint

model satisfiable

Schedule
Exploration

thread
symbolic

traces

branch
flip

Wz@20
Ww@22

…
Rx@12
Wy@18=2
…

Wz@2
0

Rx@12
Wy@15=1

T1 T2

failing schedule

1 2 3

Execution
Synthesis

4

Figure 4: Detail of production-guided schedule search.

exploring all control-flow paths, as in a conventional symbolic ex-
ecution, the symbolic execution in Cortex only follows branches
taken in the original run. Cortex, thus generates per-thread sym-
bolic traces containing the same control-flow, synchronization, and
shared memory accesses as the original, production run.

Cortex maintains a database of per-thread symbolic traces gen-
erated from any set of observed, per-thread concrete traces. Cortex
organizes the traces in its database to facilitate its downstream
search, using the executions’ control-flow. Like symbolic execu-
tion tools [4, 48, 51], Cortex denotes a branch outcome as a binary
value, with a 1 for branches taken and a 0 for branches not taken.
An execution path is, thus, uniquely defined by a string of bits.

For example, consider a symbolic trace for thread T1 in Fig-
ure 2 with path id 10. This path id indicates that the thread fol-
lowed an execution path corresponding to the conditions [z>0] and
[¬(y==0)]. Note that the 0 in the path id means that the corre-
sponding path condition evaluates false during the execution, hence
the negation symbol in the condition [¬(y==0)].

3.3 Production-Guided Search
After gathering the path profiles from production runs and generat-
ing their corresponding per-thread symbolic traces, Cortex starts its
search for alternate, failing executions. Figure 4 illustrates Cortex’s
search procedure.

Cortex’s search is guided by production in two ways. The first
way is schedule exploration, during which Cortex searches multi-
threaded executions compatible with the set of per-thread symbolic
traces from some observed execution. If schedule exploration fails
to surface any new failures, for any traces in Cortex’s database,

Cortex uses execution synthesis as a second form of production-
guided search. Cortex synthesizes new multi-threaded executions
by modifying the control-flow behavior in one or more of the
threads’ traces. Cortex then performs schedule exploration on the
new synthesized execution.

3.3.1 Schedule Exploration
Given a combination of per-thread, symbolic path traces — from
either a production run or a synthesized execution — Cortex checks
if any interleaving of operations that make up those paths leads to a
failure. First, Cortex selects an assertion from the trace at random.
Next, Cortex builds a Φfail constraint model (from Section 2.3)
with the symbolic information contained in the traces and the
condition in the assertion.

Cortex uses an SMT solver to check the satisfiability of the gen-
erated constraints. If the model is satisfiable, then the solver outputs
the failing schedule. If the constraints are unsatisfiable, then there
is no schedule that leads to a failure of the selected assertion for
the given control-flow trace. Cortex applies this schedule explo-
ration procedure to each execution in its database, reporting newly
exposed failures as they manifest.

Note that only performing schedule exploration on execu-
tions observed in production will only expose strictly schedule-
dependent failures. However, Cortex is not limited to these failures
only, because it goes beyond schedule exploration with its execu-
tion synthesis technique.

3.3.2 Execution Synthesis
Execution synthesis generates new per-thread control-flow traces
corresponding to entirely novel executions by making small pertur-
bations in the control-flow observed in production runs. By synthe-
sizing new executions with control-flow variations, and then apply-
ing schedule exploration to those synthesized executions, Cortex
can expose new failures that are schedule and path dependent.

Synthesizing executions presents two main challenges: i) how to
decide which alternate execution to synthesize, and ii) how to ob-
tain per-thread symbolic traces for the alternate execution to be syn-
thesized. Cortex addresses the first challenge with a novel heuristic
denoted branch condition flipping. The heuristic perturbs the orig-
inal control-flow observed during some production run, generating
one or more new per-thread traces. Cortex addresses the second
challenge using a combination of its trace database and symbolic
execution. If Cortex has already observed some execution in which
a thread followed the perturbed control-flow path, Cortex uses the
per-thread symbolic trace for that path that is in its database. If
Cortex has not observed the perturbed path in some prior execu-
tion, Cortex synthesizes a new symbolic path trace by running a
symbolic execution, guided by the perturbed control-flow trace.

Synthesizing a Control-flow Path. Cortex’s synthesizes a new
control-flow path by inverting path conditions on an existing path
that are within a given distance from the selected assertion.

To identify the path conditions corresponding to the branches
closest to the assertion, Cortex selects an execution from its
database and generates a non-failing, multi-threaded schedule us-
ing the Φok constraint model (from Section 2.3). Cortex examines
the resulting schedule and selects the D branches closest to the
assertion as candidates for inversion.

Cortex’s path synthesis heuristic generates paths that are most
similar to the original path trace first, generating new paths in order
of deviation from the original. The first paths that the heuristic gen-
erates are ones with a single branch outcome flipped, and Cortex
gives priority to paths in which the flipped branch is closer to the
assertion. Next, the heuristic generates new paths with two branch
flips, again, prioritizing new paths with lower total distance be-
tween branch flips and the assertion. Cortex’s path synthesis heuris-

T1

T2

B

A

1
0

C

assert

1
0

10

a) initial non-failing schedule

b) flip branch A

T1
B

A

1
0

assert

1
0

c) flip branches B and C

T1
B

A

1
0

assert

1
0

T2
C

10

T2
C

10

T1

...

...

...
assert //ok

C
B

A

schedule
T2
...

Figure 6: Branch condition flipping. Arrows and dashed arrows
represent conditional and unconditional control-flow, respectively.
Thicker arrows represent the execution path followed by the thread.

tic continues considering complexes of increasingly many branch
inversions up to the configurable threshold number D.

Figure 6a) illustrates Cortex’s path synthesis heuristic. There
are two threads, T1 and T2, and three branch conditions (A and
B belong to T1, and C belongs to T2). According to the non-
failing schedule in Figure 6a), the closest branch to the assertion
is A , followed by B and C . The figure also shows that the path
conditions in the threads’ symbolic traces are 10 (i.e., taken, not
taken) and 1 (i.e., taken), respectively for T1 and T2.

Figure 6b) depicts the first branch condition that Cortex at-
tempts to flip, namely A . As a result, Cortex generates a new
control-flow path for T1 containing 11, while the trace for T2
remains the same. Later, the path synthesis heuristic may gener-
ate another control-flow path by flipping the outcome of multiple
branches. Figure 6c) illustrates a case where Cortex simultaneously
flips branches B and C , resulting in a path for T1 containing 00
and a path for T2 containing 0.

After synthesizing a new control-flow path, Cortex needs a new
symbolic trace for the newly synthesized path. Cortex can either
find an existing symbolic trace, or synthesize a new symbolic trace.

Finding a Symbolic Trace. The easiest way for Cortex to obtain a
symbolic trace that is compatible with a newly synthesized control-
flow path is to look for one in its database of traces collected
from any prior, production execution. A compatible trace from the
database must have an identical prefix of branch outcomes as the
original, unperturbed trace, but must have the opposite outcome for
the branch or branches flipped by the path synthesis heuristic.

When there is more than one compatible, symbolic trace in the
database, Cortex considers each of them in turn, up to a maximum
of N possible traces, and in ascending order of their path length.
The tuple (D,N) allows tuning the search in terms of the number
of different branches conditions flipped and the number of possible
traces that are attempted for each branch flip. A high D means that
Cortex flips path conditions far from the assertion, and a high N
indicates that Cortex explores many paths with a common prefix.

Synthesizing a Symbolic Trace. When there is no trace in the
database that matches a newly synthesized control-flow path,
Cortex synthesizes a compatible trace using guided symbolic ex-
ecution. Cortex uses the newly synthesized control-flow path to
guide a symbolic execution of the thread up to, and including the
flipped branch or branches. After reaching the flipped branch in
the symbolic execution, Cortex has no information about which

T1

1: [z > 0]
2: w++
3: x = 1
4: y = 1
5: [¬(y == 0)]
7: assert(x > 0)

 8: z = 1
 9: [¬(w > 0)]

T2

A

B

C

d.1) initial non-failing schedule:
T1:10 and T2:0 from trace DB

d.2) Run 4: T1:11 is synthesized,
T2:0 from trace DB

C

d.3) Run 5: T1:00 and T2:0 from
trace DB

d.4) Run 6: T1:10 and T2:1 from
trace DB

C

d.5) Run 7: T1:01 is synthesized,
T2:0 from trace DB

d.6) Run 8: T1:11 is synthesized,
T2:1 from trace DB

T1 T2

1: [z > 0]

2: w++

3: x = 1
4: y = 1
5: [y == 0]

6: x--

7: assert(x > 0)

1

1

0

0

8: z = 1
9: [w > 0]

10: y = 0

EXIT

1
0

T2

-

0 1

T1

-

0 1

0 0

T13 T11, T12

T21T22, T23

a) b) c)

Symbolic Traces
(Production Run 1)

T11: 10
1: [z > 0]
2: w++
3: x = 1
4: y = 1
5: [¬(y == 0)]
7: assert(x > 0) //ok

T21: 1
8: z = 1
9: [w > 0]
10: y = 0

Symbolic Traces
(Production Run 2)

T12: 10
1: [z > 0]
2: w++
3: x = 1
4: y = 1
5: [¬(y == 0)]
7: assert(x > 0) //ok

T22: 0
8: z = 1
9: [¬(w > 0)]

Symbolic Traces
(Production Run 3)

T13: 00
1: [¬(z > 0)]
3: x = 1
4: y = 1
5: [¬(y == 0)]
7: assert(x > 0) //ok

T23: 0
8: z = 1
9: [¬(w > 0)]

T1 T2
-

0 1

0 0

-
0 1

T12

T22

T
ra

c
e

 D
B

EXIT

T1

1: [z > 0]
2: w++
3: x = 1
4: y = 1
5: [y == 0] //infeasible

 8: z = 1
 9: [¬(w > 0)]

T2

A

B

T1 T2
-

0 1

0 0

-
0 1

T221
SSTT

ra
c

e
 D

B

T1
1: [¬(z > 0)]

3: x = 1
4: y = 1
5: [¬(y == 0)]
7: ¬ assert(x > 0) //infeasible

 8: z = 1
 9: [¬(w > 0)]

T2

A

B

C

T1 T2
-

0 1

0 0

-
0 1

T221
T13

T
ra

c
e

 D
B

T1

1: [z > 0]
2: w++

3: x = 1
4: y = 1
5: [¬(y == 0)]
7: ¬ assert(x > 0) //infeasible

 8: z = 1

 9: [w > 0]
10: y = 0

T2

A

B

T1 T2
-

0 1

0 0

-
0 1

T211
T12

T
ra

c
e

 D
B

T1 T2
-

0 1

0 0

-
0 1

T221
SST
1

T1
1: [¬(z > 0)]

3: x = 1
4: y = 1
5: [y == 0] //infeasible

 8: z = 1
 9: [¬(w > 0)]

T2

C

B

A

T
ra

c
e

 D
B

T1

1: [z > 0]
2: w++
3: x = 1
4: y = 1

5: [y == 0]
6: x--
7: ¬ assert(x > 0)

 8: z = 1

 9: [w > 0]
10: y = 0

T2

A

B

C

T1 T2
-

0 1

0 0

-
0 1

T211
SSTT

ra
c

e
 D

B

//feasible!example of possible infeasible schedules explored by the SMT solver
Figure 5: a) Schematic view of the program in Figure 2: boxes represent basic blocks, arrows depict conditional jumps (0 means false and 1
means true), dashed arrows depict unconditional jumps, round shapes represent program’s exit points, and [z > 0] represents a path condition;
b) Per-thread symbolic traces path for three different correct production runs. T11:10 indicates that the trace for thread T1 from production
run 1 has path id 10; c) Trace database, with per-thread path ids organized into prefix trees. The node label “-” indicates the root of the prefix
tree. d) Production-guided schedule search employed by Cortex to find the failing schedule. SST stands for synthesized symbolic trace.

control-flow path to follow. Cortex allows the symbolic execution
to run freely, exploring all paths, as in classical symbolic execu-
tion [4, 23, 51]. We heuristically stop the symbolic execution when
it reaches the assertion or program exit along any path. We also
stop symbolic execution after a configurable threshold timeout, to
prevent the path explosion problem from hindering Cortex.

As an example, consider the scenario where Cortex has to syn-
thesize the symbolic trace for T1 required in Figure 6b). Cortex
would run the program symbolically, forcing T1 to take the branch
1 for the path condition B , as well as for path condition A . As T1’s
execution ends with the assertion right after A , Cortex would out-
put a symbolic trace for T1 that is compatible with the previously
unobserved control-flow path 11.

3.4 Root Cause Isolation
Like prior systems on systematic concurrency testing [12, 17],
Cortex is able to report a newly exposed failing schedule, but unlike
prior systems, Cortex also reports a concise summary of the fail-
ure’s root cause. To summarize a failure’s root cause, Cortex com-
putes and reports a differential path-schedule projection (DPSP).
DPSPs are an extension of differential schedule projections, devel-
oped in Symbiosis [33]. Cortex computes DPSPs by analyzing an
exposed failing execution and the original, non-failing execution
that it was derived from. A DPSP reports the salient differences
between the failing and non-failing schedule, including variation
in their event orderings, data-flow behavior, and control-flow deci-
sions. The key difference between DPSPs in this work and DSPs in
prior work is that DSPs do not incorporate differences in control-
flow between a failing and a non-failing execution, while, critically,
DPSPs include those differences.

Cortex produces the DPSP by computing a “diff” of the fail-
ing schedule against the non-failing schedule. To compute a DPSP,
Cortex first compares the traces and prunes a prefix of operations

common to both the failing and non-failing schedule. Cortex then
examines data-flow in both traces and reports only data-flow edges
that exist in one trace, but not the other. Control-flow variations are
highlighted as data-flow variations involving operations that only
executed in one trace, but not the other. DPSPs are helpful for de-
bugging, because they allow developers to see only a very small
number of relevant operations and data movement events, rather
than forcing them to pore over a full execution schedule. Further-
more, DPSPs illustrate the failure alongside a very similar, but non-
failing execution. The side-by-side comparison helps understand
the failure and aids in debugging.

4. Running Example
This section synthesizes the entire Cortex debugging workflow
using a detailed running example. Figure 5 shows how Cortex
automatically computes the root cause of the failure in Figure 2.

Static analysis. Cortex’s static analysis identifies and instruments
basic blocks and shared variables. Figure 5a shows the program’s
control-flow graph. In the example code, z, w, y, and x are marked
as symbolic.

Symbolic trace collection. The program executes in production,
potentially many times, and a path profile for each thread is col-
lected from each execution. From the path profiles, Cortex pro-
duces symbolic traces. Using symbolic execution, Cortex identi-
fies each branch condition evaluated by each thread (depicted in
square brackets in Figure 5a) and symbolic execution follows those
branches according to the path profile. The symbolic execution pro-
duces a corresponding symbolic trace file; Figure 5b shows the
per-thread symbolic traces for three non-failing, production runs
with different execution paths. For instance, T11:10 indicates that
the trace for thread T1 of production run 1 followed the control-
flow path 10 (i.e., taken, not taken). After producing the per-thread,

symbolic traces, Cortex stores them in its trace database, depicted
in Figure 5c as a prefix tree.

Production-guided search. Figures 5d.1-d.6 illustrate how Cortex
uses production-guided search to expose a failing schedule from the
non-failing, production schedules in its trace database.

First, Cortex tries to obtain a failing schedule by exploring the
schedules that are compatible with per-thread traces from produc-
tion runs that are in the trace database. Cortex applies its schedule
exploration algorithm (see Section 3.3.1) to production runs 1, 2
and 3. In this example, there is no failing schedule that simply in-
terleaves the per-thread traces from any execution. Instead, Cortex
needs to explore alternate executions that it derives from the ob-
served executions via execution synthesis.

Cortex begins its search by arbitrarily selecting production run
2, which includes traces T12 and T22. Using the traces from this
execution, Cortex generates a non-failing schedule by calling out
to the SMT solver (Figure 5d.1). Cortex examines the non-failing
schedule to identify the branches that are closest to the assertion.
In the example, these branches are A , B (from trace T12) and C
(from T22).

In Figure 5d.2, Cortex explores a different execution path by
flipping the branch condition A . The resulting path prefix is thus
obtained by inverting the second bit in the path of trace T12, i.e.,
by changing the path condition 10 to the path condition 11. Cortex
checks its database for a symbolic trace for T1 with the path prefix
11, but, in this example, there is no such path in the database.
Consequently, Cortex needs to synthesize a new symbolic trace for
T1 with that prefix using symbolic trace synthesis.

Symbolic trace synthesis produces a symbolic trace T1:11.
Cortex uses the generated trace, together with T22, to synthesize a
new execution that we refer to as “run 4”. Cortex performs sched-
ule exploration on run 4, checking for interleavings of its threads’
operations that lead to a failure. The solver, however, yields unsatis-
fiable when evaluating the constraint system that encodes schedule
exploration. The execution is infeasible because there is no feasible
data-flow that allows the value of y at line 5 to be 0.

To continue its search for a feasible schedule, Cortex again
applies its path synthesis heuristic to generate a new control-flow
path to explore (Figure 5d.3). The next branch to flip is B from
trace T12:10, which corresponds to the path 00. Cortex finds that its
trace database for T1 already contains a trace with that path prefix
(namely T13). Cortex uses the trace that it found to synthesize a
new execution (“run 5”), containing the newly synthesized trace for
T1 and trace T22. Cortex then performs schedule exploration on run
5, continuing its search for a feasible, failing alternate schedule.

Cortex proceeds according to this approach. When schedule
exploration yields no failing schedule, Cortex synthesizes a new
path, finds or synthesizes a new symbolic trace, creates a new
execution, and re-applies schedule exploration. Figure 5d.4 and
Figure 5d.5 show subsequent applications of the approach, which
consist of runs 6 and 7, respectively. Note that, in Figure 5d.5,
Cortex inverts the outcome of two branches, instead of a single
branch because, at this point in its search, it has exhausted all
options involving only a single branch inversion.

In Figure 5d.6, Cortex identifies a feasible, failing schedule for a
newly synthesized execution that includes a synthesized symbolic
trace for T1 (previously generated in run 4), and T21. The traces
for T1 and T2 in the execution for which there is a failing schedule
are the result of inverting the outcome of both branches A and C .
Note that without Cortex’s unique ability to explore both schedule
and path variations, this failure would not have been exposed.

Root cause isolation. With the failing and non-failing schedules
that are the result of production-guided search, Cortex generates
the DPSP depicted in Figure 7. On the left side is the non-failing

T1
2: w++
3: x = 1
4: y = 1

5: [y == 0]
6: x--
7: assert(x > 0)

 9: [w > 0]
10: y = 0

T2

Failing scheduleNon-failing schedule

T1

2: w++
3: x = 1
4: y = 1
5: [¬(y == 0)]
7: assert(x > 0)

init: w = 0
 9: [¬(w > 0)]

T2

Figure 7: Differential path-schedule projection.

schedule and on the right is the failing schedule. The DPSP does
not show operations that the two schedules have in common, in-
stead highlighting only the parts of the execution trace that are dif-
ferent. The DPSP illustrates (in the bold lines) which control-flow
outcomes differ between the schedules. The arrows in the figure
indicate data-flow edges that exist in one schedule, but not in the
other. Together these properties of the DPSP show the root cause of
the failure: the failure is attributable to a change in the order of op-
erations in the schedule, the data-flow changes resulting from those
ordering changes, and the control-flow changes stemming from the
changes in data-flow.

In particular, the example shows that the branch condition
[w>0], which evaluates false in the non-failing schedule, becomes
true in the failing schedule, because w at line 9 reads the value
1 (written by T1 at line 2) rather than the initial value 0. Conse-
quently, T2 executes line 10 and sets y to 0, allowing the [y==0] to
be true at line 5. In contrast, in the non-failing schedule, T1 takes
the branch outcome corresponding to the condition ¬[y==0], be-
cause y at line 5 necessarily reads the value 1 written at line 4.

Finally, the DPSP shows that the assertion failure in the failing
schedule is due to the value of x being decremented by T1 at
line 6. Conversely, the execution ends successfully in the non-
failing schedule because the read of x at line 7 returns the value
1, previously written at line 3.

Note that previous work in Symbiosis [33] simply reorders
events in the failing schedule to obtain an alternate, non-failing
schedule and produce a differential schedule projection. As such,
Symbiosis would not be able to generate a DPSP like the one of
Figure 7, because the failing schedule and the non-failing schedule
for this case comprise not only sequences of different events, but
also differing path conditions.

5. Implementation
We implemented a prototype of Cortex for Java programs. We use
Soot [49] to perform the static analysis of Java bytecode, namely
to inject probes at the beginning of each basic block that allow
recording the path profile at runtime. Moreover, we leverage Soot’s
thread-local objects (TLO) escape analysis to compute a sound
over-approximation of the set of shared variables in Java programs.
For each access on a shared variable we log an entry into a trace file
containing the variable’s reference and the source code line. Cortex
consults the trace file during symbolic execution to identify which
operations should to treat symbolically.

Cortex’s production-guided schedule search and DPSP genera-
tion were implemented in around 1,200 lines of C and C++ code
that extended the publicly available version of Symbiosis [33]. We
extended Symbiosis to i) efficiently store symbolic traces from
multiple production runs, ii) expose strictly schedule dependent,
as well as path and schedule dependent concurrency bugs using
traces from non-failing executions, and iii) perform symbolic trace
synthesis during multiple path exploration.

Cortex organizes its database of per-thread path traces, repre-
sented as bit strings, into tries (i.e., prefix trees). Tries are typically
used for string retrieval and contain one node for every common
prefix of stored strings. In Cortex’s implementation, if strings rep-
resenting two different traces share a prefix of n bits, the corre-
sponding executions followed the same path until the nth branch
decision. Cortex’s use of a trie to store traces minimizes the storage
required for large numbers of traces collected from production.

Cortex uses Java PathFinder (JPF) [51] for symbolic execution
and Z3 [7] to solve SMT constraints. We modified Java PathFinder
to integrate it with the other parts of Cortex. First, when generating
symbolic traces for the production run per-thread path profiles, we
ignore states that do not conform with execution path traced at run-
time. This allows guiding the symbolic execution along the origi-
nal paths only. Second, when synthesizing new symbolic traces, we
force JPF to follow original path solely up to the branch condition
flip point. After that, JPF switches to the traditional mode, where
it explores all branches for each condition on symbolic variables,
using a breadth-first search heuristic. In this mode, we also set a
timeout to the exploration, in order to cope with path explosion.

Our Cortex prototype assumes that bugs in programs are ex-
pressed in the code as assertion invariants. Assuming that produc-
tion software contains assertions is reasonable, as many major in-
dustrial environments use production assertions and tracing [45].
In our experiments, we added these assertions when they were not
initially present. For cases where the error had the following form
on the left, we inject the assertion as indicated on the right:

if(cond){ if(cond){
//error assert(false)

} //error
else{ }

... else{
} assert(true)

...
}

Since JPF does not support arrays of symbolic length, we have
also modified these cases in our experiments to have a constant size,
without affecting the original buggy behavior of the program.

The Cortex prototype is publicly available at http://github.
com/nunomachado/cortex-tool.

6. Evaluation
Our evaluation of Cortex focuses on answering the following three
questions:

1. How efficient is Cortex in collecting symbolic traces from pro-
duction runs? (§6.1)

2. How effective is Cortex’s production-guided search in finding
concurrency bugs? (§6.2 and §6.3)

3. How effective is Cortex in isolating the root cause of concur-
rency bugs? (§6.4)

We evaluated Cortex on the wide variety of multithreaded
benchmarks shown in Table 1. These benchmarks have been used
in prior work on concurrency debugging [10, 13, 17, 18]. We used
11 programs from the IBM ConTest benchmark suite [10]; String-
Buf, a test driver of a bug in the Java JDK1.4 [17]; ExMCR, a
micro-benchmark used by J. Huang et al. [17] to illustrate the ben-
efits of MCR against other stateless model checking techniques.
We have also tested with two real-world application bugs, namely
Pool (which consists of a data race in Apache Commons Pool) and
Cache4j (uncaught exception due to a data race). When present-
ing results, we sort test cases by “difficulty”, i.e, benchmarks with
fewer branches and smaller search spaces appear first in the tables.

Table 1: Benchmarks and performance. (LOC, #Threads, #Branches and
#Shared stand for lines of code, number of threads, number of branches, and
number of shared variable accesses in each benchmark).

Program LOC #Threads Profiling Log Symb. #Branches #Shared
Overhead Size Exec. Events

Account 373 5 18.1% 1KB 0.6s 1 244
Critical 76 3 17.3% 260B 0.59s 4 36

ExMCR 95 3 17.1% 170B 0.42s 4 56
PingPong 388 6 18.9% 226B 0.47s 5 66

Piper 280 5 18.6% 470B 1.11s 12 182
Airline 136 8 9.1% 252B 2.53s 15 77
Garage 554 7 6.7% 105KB 56.50s 22 284

BubbleSort 376 6 13.4% 1KB 0.59s 24 161
Manager 219 5 16.4% 1.4KB 0.79s 56 331

Loader 146 11 2.4% 4KB 0.91s 56 386
StringBuf 1339 3 19.9% 1KB 1.13s 65 331

TicketOrder 246 4 9.5% 892B 0.85s 69 354
BufWriter 272 5 20.4% 4.8KB 4.84s 89 1245

Pool 10K 3 2.5% 960B 1.4s 21 198
Cache4j (S) 2.3K 4 18.4% 3KB 1.02s 51 541

Cache4j (M) 2.3K 4 20% 15KB 2.01s 233 2364
Cache4j (L) 2.3K 4 21.7% 21KB 3.47s 309 3105

We modeled the data collection of a production environment
by executing each program 100 times and ensuring that none of
the 100 executions triggered the bug. From these production runs,
we generated non-failing, symbolic traces and applied production-
guided search to expose a failing schedule for each benchmark.
For Cache4j, we have experimented with different workloads to
assess the scalability of the constraint solving phase, as done in
previous work [33]. Concretely, we re-ran this test case by varying
the worker thread’s update loop to have 1 (small), 5 (medium), and
10 (large) iterations.

The experiments were conducted on an 8-core, 3.5Ghz machine
with 32GB of memory, running Ubuntu 10.04.4.

6.1 Cortex is Practical and Efficient
The most important result is that for all of the benchmarks that
we considered, Cortex exposed a new failing execution based on
a small handful of observed, non-failing schedules, and did so in
a practical amount of time. Table 1 reports the time and storage
overhead imposed by Cortex on production runs to capture path
profiles, as well as the time required to compute symbolic trace
collection. We report average time values across all executions
(concrete and symbolic) for each benchmark.

Cortex’s path profiling overhead ranges from from 2.4% in
Loader to 21.7% in Cache4j (L). The overhead is tolerable, even
for production, and similar to other prior work in this area [20, 33].
Better software path profiling [3] or hardware support [50] are
orthogonal techniques that would reduce this overhead.

Regarding space overhead, Cortex produces traces with sizes
ranging from 170B in ExMCR to 105KB in Garage. The symbolic
execution time is typically low as well: JPF produced a symbolic
trace in less than one minute for all programs. The programs with
larger path profiles are also the ones with more shared symbolic
events (e.g. BufWriter and Garage). Garage has a long traces and
symbolic executions time because it uses busy waiting.

6.2 Cortex Exposes Failures
Table 2 reports experimental results that allow assessing Cortex’s
efficacy in finding failing schedules. Columns 3 and 4 of the table
together show that Cortex was able to find a failing schedule for all
programs, including ones with failures dependent on both the path
and schedule (“ branch dependent ”). We now characterize Cortex’s
ability to expose new failures.

Strictly schedule dependent bugs. Column 3 of Table 2 shows
that schedule exploration alone works for only 8 out of the

http://github.com/nunomachado/cortex-tool
http://github.com/nunomachado/cortex-tool

Table 2: Bug Finding Results. Column 2 shows the number of different
correct production runs observed; Column 3 marks bug found by schedule
exploration only; Columns 4-8 provide details of production-guided search;
Last column depicts the average time to solve the corresponding satisfiable
SMT system.

Program
#Diff. Schedule Branch Dependent SMT
Prod. Depend. Tries (D,N) #Branches #Synth. Solving
Runs Only Flipped Traces Time

Account 1 3 29s
Critical 23 3 6 (2,3) 2 4 <1s

ExMCR 1 3 6 (4,1) 6 6 <1s
PingPong 39 3 <1s

Piper 33 3 1 (1,1) 1 1 1s
Airline 3 3 <1s
Garage 2 3 9 (3,4) 6 6 2s

BubbleSort 26 3 4 (4,1) 4 4 <1s
Manager 39 3 1 (1,1) 1 0 9s

Loader 1 3 11 (11,1) 11 10 25s
StringBuf 12 3 9s

TicketOrder 47 3 1 (1,1) 1 0 1s
BufWriter 57 3 2h56m

Pool 59 3 17 (5,4) 15 8 1s
Cache4j (S) 11 3 5s

Cache4j (M) 29 3 1h30m
Cache4j (L) 37 3 2h8m

17 benchmarks, namely Account, PingPong, Airline, StringBuf,
BufWriter, and the three Cache4j scenarios. The reason schedule
search alone is adequate for these benchmarks is that these eight
cases include assertions of the form if(cond){assert(false)}
else{assert(true)}. Cortex finds the failing schedule via
schedule exploration alone because the failures are dependent only
on strictly schedule dependent data flow to cond.

Efficiency of production-guided search. Column 4 in Table 2
shows that production-guided search finds a failing schedule for
our path and schedule dependent bugs. Column 5 shows the num-
ber of branch outcome inversions Cortex performed to expose each
failure. 3 out of 9 cases required inverting only the single clos-
est branch to the assertion. This outcome supports our observation
that failing executions are lurking in production, and that perturb-
ing production executions is an effective search strategy for these
otherwise elusive failures. The need for branch inversions, even in
our production-guided search reinforces the fact that schedule ex-
ploration alone is insufficient.

Production run diversity. Collecting a diversity of production ex-
ecutions expedites Cortex’s search for failures because it populates
the trace database with traces, obviating the more costly execution
synthesis step. Column 2 of Table 2 shows how many distinct non-
failing executions Cortex observed during 100 runs of each bench-
mark. For all benchmarks except BufWriter and Pool, less than 50%
of the collected executions are distinct. The data suggest that, even
in small numbers of runs, executions are diverse and Cortex can
leverage a large trace database in a large deployment.

Search parameters. The column labelled as (D,N) character-
izes parameters used during Cortex’s search for failures. Programs
for which Cortex finds the failure with a single branch flip exhibit
the pair (1,1) for (D,N). For those programs, Cortex exposed a
bug by inverting the outcome of the single branch that was closest
to the assertion.

In contrast, in Critical, ExMCR, Garage, BubbleSort, Loader,
and Pool the optimal value for (D,N) varies significantly. For Crit-
ical, Cortex found the failing schedule after inverting two branch
conditions (the two closest to the assertion) and performed sched-
ule exploration using three different symbolic traces for each one
of the two paths. For ExMCR, Cortex was able to find the failing
execution in 6 attempts, but in this case it required 6 different com-

binations of branch inversions. Note that the number of attempts is
actually greater than the product of the search parameters (D,N)
for ExMCR, because Cortex needed to flip a combination of two
branches simultaneously in order to trigger this failure2. Garage
required fewer attempts than D × N . The reason is that Cortex
selected traces for some paths that included redundant execution
paths. Cortex discarded the redundant paths and found a failing
schedule using the 4th trace for the 6th combination of branch flips.

For BubbleSort and Loader, Cortex experimented with only one
trace per branch inversion, but it searched through 4 and 11 branch
inversions, respectively, to compute the failing schedule. Pool, in
turn, was the program for which Cortex required more tries and
flips of branch conditions to expose the failure. This is because
the only combination of branch inversions that allowed finding the
failing schedule corresponded to flipping simultaneously the 4th

and 5th branches closest to the assertion.
In conclusion, these results show that search parameters (D,N)

affect significantly the number of attempts that production-guided
schedule search requires to expose the concurrency bug.

Solving Time. The last column of Table 2 reports the average
amount of time that the SMT solver took to solve the constraint
system (this value comprises only the case when the solver yielded
satisfiable, because reporting unsatisfiable took at most 3 seconds
for our test cases). The data shows that solving time is low for
most cases, i.e., a couple of seconds. The exception are benchmarks
BufWriter, Cache4j (M), and Cache4j (L). Once more, this is due to
the higher number of shared events in these programs. In particular,
the solver took almost 3 hours for BufWriter, because the SMT con-
straint formulation for this program contains more than 920K read-
write constraints and more than 6.5K locking constraints, which
have a big impact in the solving time for this kind of constraint
systems [20, 33].

6.3 Cortex Compares Favorably to Systematic Testing
Unlike Cortex, systematic testing techniques search by fully ex-
ploring the space of possible executions. We directly compared
Cortex to two state-of-the-art systematic testing techniques, namely
MCR [17] and iterative context bounding with dynamic partial or-
der reduction (ICB-DPOR) [12]. Similarly to Cortex, MCR uses
an SMT constraint-based approach to efficiently explore the space
of possible schedules of a multithreaded execution in search for
concurrency bugs. In particular, MCR starts from a concrete seed
interleaving and builds a maximal causal model that allows check-
ing correctness properties on all execution schedules equivalent to
that seed interleaving. To further explore the state space, MCR it-
eratively generates new non-redundant schedules by enforcing read
operations to return different values. MCR then uses the newly gen-
erated schedules as seed interleavings for subsequent iterations.

On the other hand, ICB-DPOR simply bounds the number of
thread preemptions that can occur when systematically exercising
different execution schedules, thus not accounting for redundant
interleavings (i.e. interleavings that produce the same values for
read operations).

Our goal is to show that Cortex examines fewer executions
before exposing a failure than other approaches. We reproduce
results for MCR and ICB-DPOR reported by Huang et al. [17]
for the subset of benchmarks that have been used with all three
systems. Table 3 reports the comparison.

The data show that, for most cases, Cortex searches orders of
magnitude fewer executions than ICB-DPOR, and considerably
fewer than MCR. The standout is ExMCR; ExMCR is a micro-
benchmark that was designed to be adversarial to systematic con-

2 We note that there are 2D − 1 different combinations of branch condition
flips that can be attempted for a given search parameter D.

Table 3: Comparison between Cortex and other systematic concur-
rency testing techniques. Data for MCR and ICB-DPOR as reported by
J. Huang et al. [17] (“*” indicates bugs that are schedule-dependent only).
Shaded cells indicate the cases where Cortex outperforms the other systems.

Program #Attempts to find failing schedule
Cortex MCR ICB-DPOR

Account* 1 2 20
ExMCR 6 46 3782

PingPong* 1 2 37
Airline* 1 9 19

BubbleSort 4 4 400
StringBuf* 1 2 10

Pool 17 3 6

currency testing systems. Cortex exposes the bug after searching
just 6 executions, substantially outperforming both other systems.

The only benchmark where Cortex required more attempts to
find the failing schedule than the other approaches was Pool. As
mentioned before, for this program, Cortex was only able to trigger
the failure after inverting the 4th and 5th branches at the same time.
Hence, Cortex ended up spending time exploring combinations
of branch flips that, despite being closer to the assertion, were
ineffective to expose the failing schedule.

We believe the aforementioned scenario to be infrequent in
practice, as shown by the outcomes of the other benchmarks. There-
fore, we argue that the results in Table 3 further support our obser-
vation production-guided search is effective.

6.4 DPSPs are Concise and Informative
We computed DPSPs for all of our benchmarks, using observed
(and synthesized) non-failing schedules and corresponding failing
schedules exposed by Cortex. We evaluated DPSPs by comparing
the number of data-flows and events in the DPSPs to those in full
schedules. Table 4 summarizes our results.

The data show that DPSPs are simpler than full, failing sched-
ules. DPSPs include only the salient differences between the fail-
ing and the correct executions, directing the developer’s attention
towards the most relevant events and the data-flows involved in
the root cause of the failure. On average, Cortex produced DPSPs
with 83% fewer data-flows and 50% fewer events than full sched-
ules. Considering benchmarks with path and schedule dependent
bugs alone, the average reduction values are 72% and 35%, re-
spectively for data-flows and events. These results provide evidence
that DPSPs are a useful asset for root cause diagnosis, not only for
schedule-dependent only failures, but also for schedule and path
dependent failures.

6.5 Discussion
The experimental results presented in the previous sections clearly
demonstrate the benefits of Cortex in exposing and isolating path
and schedule dependent bugs. Nevertheless, there are still a few
challenges that need to be addressed in order to further improve
Cortex’s applicability and scalability. We enumerate these chal-
lenges below and discuss possible research lines to address them
in the future.

Non-Assertion Bugs. Our current Cortex prototype assumes that
failures manifest as assertion violations. Although assertions are
commonly placed in code during development, concurrency bugs
might not always be expressed as invariant failures.

One can address this issue by extending Cortex’s constraint
model to check for other type of concurrency bugs (e.g. data
races [17] or deadlocks) in addition to assertion violations.

Input Non-determinism. In this paper, we assume that all pro-
duction runs are captured with a fixed input. Consequently, we con-

Table 4: DPSP conciseness. Reduction achieved by Cortex in terms of
number of data-flows and events with respect to full failing schedules (“*”
indicates bugs that are schedule-dependent only).

Program #Data-flows #Data-flows #Events #Events
Full DPSP (%Red.) Full DPSP (%Red.)

Account* 139 6 (↓96%) 244 58 (↓76%)
Critical 13 7 (↓46%) 36 13 (↓64%)

ExMCR 16 8 (↓50%) 56 39 (↓30%)
PingPong* 16 1 (↓94%) 66 5 (↓92%)

Piper 57 2 (↓96%) 182 51 (↓72%)
Airline* 29 3 (↓90%) 77 18 (↓77%)
Garage 139 26 (↓81%) 284 235 (↓17%)

BubbleSort 69 15 (↓78%) 161 144 (↓11%)
Manager 142 32 (↓77%) 331 220 (↓34%)

Loader 179 21 (↓88%) 386 281 (↓27%)
StringBuf* 115 1 (↓99%) 331 40 (↓88%)

TicketOrder 183 45 (↓75%) 354 290 (↓18%)
BufWriter* 745 95 (↓87%) 1245 1216 (↓2%)

Pool 73 34 (↓53%) 198 123 (↓38%)
Cache4j (S)* 211 1 (↓99.5%) 541 11 (↓98%)

Cache4j (M)* 862 3 (↓99.7%) 2364 1371 (↓42%)
Cache4j (L)* 1139 3 (↓99.7%) 3105 1094 (↓65%)

sider that the execution control-flow is only affected by thread inter-
leavings. Exposing concurrency bugs considering variable input in
addition to schedule non-determinism is substantially more chal-
lenging, because the search space now grows along two different
dimensions: input and schedules.

A possible way to address input non-determinism is to extend
Cortex to record the input during production runs, in addition to
threads’ execution path. This way, symbolic traces could then be
aggregated in subsets according to their execution path and input.
Another approach is to mark as symbolic the variables that are
affected by the inputs of the program, in order to force Cortex to
explore the space of possible inputs during symbolic execution.

Long Executions. As shown in our experiments, when the execu-
tion has a large number of shared events, the SMT solver can take
a long time to solve the constraint system. For long executions, this
problem is exacerbated and it can become hard to expose a failing
schedule in a reasonable amount of time.

To improve the scalability of Cortex’s constraint solving phase,
one could apply record-and-replay techniques [32, 37, 55] to cap-
ture lightweight information regarding the thread orderings ob-
served at runtime. This data could then be used to prune the con-
straint model (by fixing some read-write linkages), without com-
promising the ability to expose failing schedules.

Alternatively, Cortex could leverage interference abstractions [46]
to make the constraint analysis more tractable. Interference abstrac-
tions allow computing under- and over-approximations of thread
interferences in a concurrent program. Moreover, interference ab-
stractions can be gradually refined to reduce the space of possible
schedules when checking for properties [46].

7. Related Work
A large body of prior work has studied debugging and testing of
concurrent programs. In this section, we we reiterate some of the
solutions discussed in Section 2.2 and overview other prior efforts
that are most related to Cortex.

Cortex vs Symbiosis. Symbiosis [33] is a system that helps devel-
opers to understand and diagnose concurrency failures by comput-
ing a differential schedule projection (DSP). DSPs are useful for
debugging because they highlight the variations in data-flow be-
tween a failing schedule and a non-failing schedule, which allows
isolating the bug’s root cause.

As referred in Section 2.2, Cortex and Symbiosis leverage sev-
eral similar techniques, namely guided symbolic execution, SMT

constraint solving, and differential analysis to isolate bugs. How-
ever, we argue that these two systems are fundamentally different.
A fundamental distinction of Cortex is that Symbiosis starts from
a single failing execution and produces a single non-failing one.
Symbiosis is, therefore, predicated on having evidence about the
existence of a bug and its location. In contrast, Cortex synthesizes
a failing execution from a set of failure-free executions. As such,
Cortex must explore a much larger search space of executions. Fur-
thermore, this space includes both branch and schedule variations:
another key distinction from Symbiosis, which is not able to handle
path variations.

Finally, as Symbiosis cannot isolate path and schedule depen-
dent bugs like Cortex, we can say the DPSPs computed by Cortex
are more broadly applicable than the DSPs produced by Symbiosis.

Cooperative tracing of production runs. Cortex’s cooperative
approach is inspired by prior work on cooperative tracing and de-
bugging. CBI [26], CCI [21], and Gist [22] log events (e.g., branch
frequency, return values) from multiple production runs and use
statistical predictors to isolate the bug’s root cause. LBR/LCR [2],
in turn, uses on low-overhead hardware extensions to maintain a
short-term log of hardware events that are useful for production
run failure diagnosis. CoopREP [32] records partial logs from mul-
tiple user instances running a multithreaded program and combines
that information to deterministically replay a concurrency error.
Aviso [29] uses statistical analysis of production-run event traces,
but with the orthogonal goal of avoiding failures, rather than expos-
ing them.

Cortex benefits from information collected in production as
well. However, Cortex has more immediately exposed failures than
other cooperative techniques because it does not need the amount of
data required by statistical approaches. Cortex has also the advan-
tage of being able to synthesize new execution traces as necessary.
Moreover, most other cooperative systems require first observing a
failing execution, rather than exposing new ones.

Testing for concurrency bugs. Systematic concurrency testing
(SCT) is one approach to testing multithreaded programs. The two
most widely adopted SCT techniques are partial order reduction
(POR) and schedule bounding. POR [15] reduces the number of
schedules that need to be explored without false negatives, by
exploring only one of each group of partial-order-equivalent set
of executions. Dynamic POR techniques aim at improving the
efficiency and effectiveness of POR by computing a persistent
set [6], sleep set [12], and source set [1] during systematic search.

Schedule bounding techniques strive to limit the set of sched-
ules examined during testing [8, 34, 39]. For instance, preemption
bounding [34, 39] limits the number of preemptive context switches
that are allowed in a schedule. Delay bounding [8], in turn, bounds
the amount of times a schedule can deviate from the scheduling
defined by a given deterministic scheduler.

CTrigger [36] attempts to reduce the interleaving space in ex-
ploration by focusing the testing on unserializable interleavings,
which are interleavings that usually correspond to atomicity vio-
lations and have low probability of occurring outside a controlled
environment. In turn, AtomFuzzer [35] relies on annotations pro-
vided by developers to dynamically check for atomicity violations
in multithreaded programs. AtomFuzzer uses a random scheduler
to choose an arbitrary thread to run at every program state, favoring
interleavings that correspond to atomicity violation execution pat-
terns. RaceFuzzer [44] also employs random testing, but with the
goal of finding data races. Similarly to AtomFuzzer, RaceFuzzer
combines a random scheduler with race detection techniques, in
order to guide an execution schedule towards potential racing pairs
of statements.

All of these techniques output a failing schedule and expose new
concurrency bugs, but do not concisely summarize a failure’s root
cause, like Cortex.

Another approach to testing multithreaded programs is test syn-
thesis. Test synthesis receives a suite of sequential tests as in-
put, and analyzes the traces from these sequential executions in
order to generate bug-inducing multithreaded tests. Omen [40],
Narada [42], and Intruder [41] use this approach to automatically
synthesize tests aimed at exposing deadlocks, races, and atomicity
violations, respectively. Note, however, that test synthesis tech-
niques still require multithreaded tests to be executed and analyzed
with dynamic detectors [14, 35, 38] to find the concurrency bugs.

Symbolic execution and SMT constraints Symbolic execution
and SMT constraint solving form the core of Cortex’s sched-
ule search. Prior work has also used a combination of sym-
bolic execution and SMT constraint formulations to determinis-
tically replay concurrency failures [20], test multithreaded pro-
grams [11, 17], find atomicity violations [52] and identify schedule-
sensitive branches [18].

However, none of the techniques above use cooperative trace
collection and production-guided search.

8. Conclusions and Future Work
We have presented Cortex, a system that is not only able to find
concurrency bugs in programs, but also helps the programmer in
identifying their root cause. For this, Cortex generates differential
path-schedule projections (DPSPs) that capture the differences be-
tween non-failing and failing executions, even when threads follow
different paths in each execution. These DPSPs have from 46% to
99% less data-flows than full failing executions, strongly simpli-
fying the task of identifying the branches that are involved in the
bug.

Contrary to most previous work, Cortex does not require a
failure to be observed in production to avoid exploring the full
space of possible executions. Instead, it is able to use non-failing
executions from production runs as a starting point for exploration,
generating synthetic executions that are likely to expose a bug
(when it exists). Interestingly, with the benchmarks used in the
paper, Cortex was able to generate failing executions after a few
(more, precisely, from just 1 to 15) cleverly guided branch flips.

In its current version, Cortex stops when a failing execution and
the corresponding DPSP are produced. In future versions, we plan
to search for, and compare, multiple failing executions, to enrich
the information provided to the programmer.

Acknowledgements
We would like to thank our shepherd Murali Ramanathan and the
anonymous reviewers for their invaluable feedback. This work was
partially supported by Fundação para a Ciência e a Tecnologia
(FCT), under project UID/CEC/50021/2013, and by a 2015 Google
Faculty Research Award.

References
[1] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic

partial order reduction. In POPL’14, 2014.
[2] J. Arulraj, G. Jin, and S. Lu. Leveraging the short-term memory

of hardware to diagnose production-run software failures. In ASP-
LOS’14, 2014.

[3] T. Ball and J. R. Larus. Optimally profiling and tracing programs.
ACM Trans. Program. Lang. Syst., 16(4), July 1994.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
OSDI’08, 2008.

[5] G. Candea. Exterminating bugs via collective information recycling.
In HotDep’11, 2011.

[6] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space
reduction using partial order techniques. In STTT’98, 1998.

[7] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS’08/ETAPS’08, 2008.

[8] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded scheduling.
In POPL’11, 2011.

[9] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race
conditions and deadlocks. In SOSP’03, 2003.

[10] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In IPDPS’03, 2003.

[11] A. Farzan, A. Holzer, N. Razavi, and H. Veith. Con2colic testing. In
ESEC/FSE’13, 2013.

[12] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL’05, 2005.

[13] C. Flanagan and S. Qadeer. A type and effect system for atomicity. In
PLDI’03, 2003.

[14] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs. In
PLDI’08, 2008.

[15] P. Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems: An Approach to the State-Explosion Problem. Springer-
Verlag, 1996.

[16] P. Godefroid. Model checking for programming languages using
verisoft. In POPL’97, 1997.

[17] J. Huang. Stateless model checking concurrent programs with maxi-
mal causality reduction. In PLDI’15, 2015.

[18] J. Huang and L. Rauchwerger. Finding schedule-sensitive branches.
In ESEC/FSE’15, 2015.

[19] J. Huang, P. Liu, and C. Zhang. LEAP: Lightweight deterministic
multi-processor replay of concurrent java programs. In FSE’10, 2010.

[20] J. Huang, C. Zhang, and J. Dolby. Clap: Recording local executions
to reproduce concurrency failures. In PLDI’13, 2013.

[21] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and sampling
strategies for cooperative concurrency bug isolation. In OOPSLA’10,
2010.

[22] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and G. Candea. Failure
sketching: A technique for automated root cause diagnosis of in-
production failures. In SOSP’15, 2015.

[23] J. C. King. Symbolic execution and program testing. Commun. ACM,
19(7), July 1976.

[24] M. Kusano, A. Chattopadhyay, and C. Wang. Dynamic generation of
likely invariants for multithreaded programs. In ICSE ’15, 2015.

[25] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7), July 1978.

[26] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug isolation via remote
program sampling. In PLDI’03, 2003.

[27] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting atomicity
violations via access interleaving invariants. In ASPLOS XII, 2006.

[28] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics.
In ASPLOS XIII, 2008.

[29] B. Lucia and L. Ceze. Cooperative empirical failure avoidance for
multithreaded programs. In ASPLOS’13, 2013.

[30] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: Architectural support
for debugging and dynamically avoiding multi-variable atomicity vio-
lations. In ISCA’10, 2010.

[31] B. Lucia, B. P. Wood, and L. Ceze. Isolating and understanding con-
currency errors using reconstructed execution fragments. In PLDI’11,
2011.

[32] N. Machado, P. Romano, and L. Rodrigues. Lightweight cooperative
logging for fault replication in concurrent programs. In DSN’12, 2012.

[33] N. Machado, B. Lucia, and L. Rodrigues. Concurrency debugging
with differential schedule projections. In PLDI’15, 2015.

[34] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent pro-
grams. In OSDI’08, 2008.

[35] C.-S. Park and K. Sen. Randomized active atomicity violation detec-
tion in concurrent programs. In FSE’08, 2008.

[36] S. Park, S. Lu, and Y. Zhou. Ctrigger: Exposing atomicity violation
bugs from their hiding places. In ASPLOS XIV, 2009.

[37] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
PRES: Probabilistic replay with execution sketching on multiproces-
sors. In SOSP’09, 2009.

[38] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: Fault localization in
concurrent programs. In ICSE ’10, 2010.

[39] S. Qadeer. Partial-order reduction for context-bounded state explo-
ration. Technical Report MSR- TR-2007-12, Microsoft Research,
2007.

[40] M. Samak and M. K. Ramanathan. Multithreaded test synthesis for
deadlock detection. In OOPSLA ’14, 2014.

[41] M. Samak and M. K. Ramanathan. Synthesizing tests for detecting
atomicity violations. In ESEC/FSE 2015, 2015.

[42] M. Samak, M. K. Ramanathan, and S. Jagannathan. Synthesizing racy
tests. In PLDI 2015, 2015.

[43] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Trans. Comput. Syst., 15(4), Nov. 1997. ISSN 0734-2071.

[44] K. Sen. Race directed random testing of concurrent programs. In
PLDI’08, 2008.

[45] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale dis-
tributed systems tracing infrastructure. Technical report, Google, Inc.,
2010.

[46] N. Sinha and C. Wang. On interference abstractions. In POPL ’11,
2011.

[47] P. Thomson, A. F. Donaldson, and A. Betts. Concurrency testing using
schedule bounding: An empirical study. In PPoPP’14, 2014.

[48] N. Tillmann and J. De Halleux. Pex: White box test generation for
.net. In TAP’08, 2008.

[49] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot - a java bytecode optimization framework. In CASCON’99,
1999.

[50] K. Vaswani, M. J. Thazhuthaveetil, and Y. N. Srikant. A pro-
grammable hardware path profiler. In CGO’05, 2005.

[51] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test input generation
with java pathfinder. In ISSTA’04, 2004.

[52] C. Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-based symbolic
analysis for atomicity violations. In TACAS’10, 2010.

[53] W. Zhang, C. Sun, and S. Lu. ConMem: Detecting severe concurrency
bugs through an effect-oriented approach. In ASPLOS XV, 2010.

[54] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and
T. Reps. Conseq: Detecting concurrency bugs through sequential
errors. In ASPLOS XVI, 2011.

[55] J. Zhou, X. Xiao, and C. Zhang. Stride: Search-based deterministic
replay in polynomial time via bounded linkage. In ICSE’12, 2012.

	Introduction
	Motivation and Background
	Concurrency Bugs
	Challenges of Path and Schedule Dependent Bugs
	Computing Schedules with Symbolic Execution and Constraint Solving

	Cortex
	Static Analysis
	Trace Collection
	Production-Guided Search
	Schedule Exploration
	Execution Synthesis

	Root Cause Isolation

	Running Example
	Implementation
	Evaluation
	Cortex is Practical and Efficient
	Cortex Exposes Failures
	Cortex Compares Favorably to Systematic Testing
	DPSPs are Concise and Informative
	Discussion

	Related Work
	Conclusions and Future Work

